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XXII. A Memoir on Prepotentials. By Professor CaYLEY, F.R.S.

Received April 8,—Read June 10, 1875.

THE present Memoir relates to multiple integrals expressed in terms of the (s+41) ulti-
mately disappearing variables (2. .z, w), and the same number of parameters(a.. ¢, ¢),
and being of the form

f 0 dor .
J{a=2)% + =2+ (e—w)*}"™

where ¢ and dw depend only on the variables (#..2, w). Such an integral, in regard
to the index 4s+g¢, is said to be “ prepotential,” and in the particular case g=—1% to
be ¢ potential.”

I use throughout the language of hyper-tridimensional geometry: (z..z, w) and
(a..c, e) are regarded as coordinates of points in (s-+1)dimensional space, the former
of them determining the position of an element ¢dw of attracting matter, the latter
being the attracted point; viz. we have a mass of matter = {¢dw distributed in such
manner that, de being the element of (s+41)- or lower-dimensional volume at the point
(% ..z, w), the corresponding density is ¢, a given function of (z ..z, w), and that the
element of mass gdw exerts on the attracted point («..¢, ¢) a force inversely propor-
tional to the (s4-2¢-4-1)th power of the distance {(¢—2)*. .+ (c—z)*+(e—w)*}%. 'The
Integration is extended so as to include the whole attracting mass {¢dw; and the integral
is then said to represent the Prepotential of the mass in regard to the point (a.. ¢, ).
In the particular case s=2, g= —4, the force is as the inverse square of the distance,
and the integral represents the Potential in the ordinary sense of the word.

The element of volume dw is usually either the element of ‘solid (spatial or (s+1)-
dimensional) volume dz..dzdw, or else the element of superficial (s-dimensional)
volume dS. In particular, when the surface (s-dimensional locus)is the (s-dimensional)
plane w=0, the superficial element dS is=dx ... ds. The cases of a less-than-s-dimen-
sional volume are in the present memoir considered only incidentally. It is scarcely
necessary to remark that the notion of density is dependent on the dimensionality of the
element of volume dw : in passing from a spatial distribution, ¢ dx ... dz dw, to a super-
ficial distribution, ¢ dS, we alter the signification of ¢. In fact if, in order to connect
the two, we imagine the spatial distribution as made over an indefinitely thin layer or
stratum bounded by the surface, so that at any element dS of the surface the normal
thickness is dv, where dv is a function of the coordinates (x. ..z, w) of the element dS,
the spatial element is =dv dS, and the clement of massgda ... dz dw is =¢ dv dS; and
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676 PROFESSOR CAYLEY ON PREPOTENTIALS.

then changing the signification of ¢, so as to denote by it the product ¢ dv, the expression
for the element of mass becomes ¢ dS, which is the formula in the case of the superficial
distribution. -

The space or surface over which the distribution extends may be spoken of as the
material space or surface; so that the density ¢ is not =0 for any finite portion of the
material space or surface; and if the distribution be such that the density becomes =0
for any point or locus of the material space or surface, then such point or locus, consi-
dered as an infinitesimal portion of space or surface, may be excluded from and regarded
as not belonging to the material space or surface. It is allowable, and frequently con-
venient, to regard ¢ as a discontinuous function, having its proper value within the
material space or surface, and having its value =0 beyond these limits; and this being
so, the integrations may be regarded as extending as far as we please beyond the material
space or surface (but so always as to include the whole of the material space or surface)—
for instance, in the case of a spatial distribution, over the whole (s-41)dimensional
space; and in the case of a superficial distribution, over the whole of the s-dimensional
surface of which the material surface is a part.

In all cases of surface-integrals it is, unless the contrary is expressly stated, assumed
that the attracted point does not lie on the material surface; to make it do so is, in
fact, a particular supposition. As to solid integrals, the cases where the attracted point
is not, and is, in the material space may be regarded as cases of coordinate generality ;
or we may regard the latter one as the general case, deducing the former one from it
by supposing the density at the attracted point to become =0.

The present memoir has chiefly reference to three principal cases, which I call
A, C, D, and a special case, B, included both under A and C: viz. these are :—

A. The prepotential-plane case; ¢ general, but the surface is here the plane w=0,
so that the integral is

gdr...dz )
((@—2).. + (c—2)2+ 1
B. The potential-plane case; ¢= -%«, and the surface the plane w=0, so that the
integral is

edr...dz .
Af{ (a—.Z')Q_ ot (c—Z)Q_I_eQ}%s—%

C. The potential-surface case; ¢g=—3%, the surface arbitrary, so that the integral is

5" o dS .
{(a—2)%.. .+ (c-—-z)?—}- (e—w)2}et

D. The potential-solid case; g=—4, and the integral is

j‘ odw...dzdw .
(@—a)% .+ (c—2) 2+ (e—w)* B
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It is, in fact, only the prepotential-plane case which is connected with the partial

differential equation

(dQ 2g+1 d

da® " +dcg+de9+ e )V 0,

considered in GREEN'S memoir ¢ On the Attractions of Ellipsoids’ (1835), and called
here “ the prepotential equation.” For this equation is satisfied by the function

1
{a®.. .+ cg+e9}%s+q,

and therefore also by
1

{(a—a)%. . .+ (c—2)2 4 2}FF7
and consequently by the integral

gdz.. R -
f{(a_@ +<c— R W

that is by the prepotential-plane integral ; but the equation is no¢ satisfied by the value

1
{(ll— )9...+(c-—z)Q_l_(e__w)Q}%s_l_qa

nor, therefore, by the prepotential-solid, or general superficial, integral.
But if g=—1, then, instead of the prepotential equation, we have *the potential
equation ”

a2 42 d2
<d'_aez .. '+B?2+@>V=O;
.
{aﬁ. . .+CQ+eQ}%s-,%9

and this is satisfied by

and therefore also by
1

{la=—2)% ..+ (c—2)*+ (e_w)e}%s—%'

edz...dzdw
’y{(a-—x)g...+(c—-z)9+(e_w)9}%s—%» R ()

the potential-solid integral, provided that the point (a ... c, e) does not lie within the
material space: 1 would rather say that the integral does not satisfy the equation, but
of this more hereafter; and it is satisfied by

' o dS
f{(a—w)g...+(c—z)9+(e——w)2}%s“%’ N ()

the potential-surface integral. The potential-plane integral (B), as a particular case of
(C), of course also satisfies the equation.

Each of the four cases give rise to what may be called a distribution-theorem ; viz.
given V a function of («...c, e) satisfying certain prescribed conditions, but otherwise
arbitrary, then the form of the theorem is that there exists and that we can find an expres-

4x2

Hence it is satisfied by
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sion for ¢, the density or distribution of matter over the space or surface to which the
theorem relates, such that the corresponding integral V has its given value, viz. in
A and B there exists such a distribution over the plane w=0, in C such a distribution
over a given surface, and in D such a distribution in space. The establishment, and
exhibition in connexion with each other, of these four distribution-theorems is the
principal object of the present memoir; but the memoir contains other investigations
which have presented themselves to me in treating the question. It is to be noticed
that the theorem A belongs to GREEN, being in fact the fundamental theorem of his
memoir of 1835, already referred to. Theorem C, in the particular case of tridimen-
sional space, belongs also to him, being given in his ‘Essay on the Application of
Mathematical Analysis to the theories of Electricity and Magnetism’ (Nottingham, 1828),
being partially rediscovered by Gauss in the year 1840 ; and theorem D, in the same
case of tridimensional space, to LEJEUNE-DIRICHLET: see his memoir ¢ Sur un moyen
général de vérifier I'expression du potentiel relatif & une masse quelconque homogeéne
ou hétérogene,” Crelle, t. xxxii. pp. 80-84 (1840). I refer more particularly to these
and other researches by Gauss, JAcoBI, and others in an Annex to the present memoir.

On the Prepotential Surface-integral.—Art. Nos. 1 to 18.

1. In what immediately follows we require

2. ..dz
V'—j‘(wQ .. +z9+eg)%s+q’

limiting condition a?...42>=R? the prepotential of a uniform (s-coordinal) circular
disk *, radius R, in regard to a point (0...0, ¢) on the axis; and in particular the value
is required in the case where the distance ¢ (taken to be always positive) is indefinitely
small in regard to the radius R.

Writing #=r& .. .z=r%, where the s new variables &£...& are such that &°...4+§°=1,

the integral becomes
Y rs=ldr dS S = ldr
j (rQ 28+q j’d (7 2s+q

where dS is the element of surface of the s-dimensional unit-sphere &°...4-¢*=1; the
2(I'y)*
I'ss

integral {dS denotes the entire surface of this sphere, which (see Annex I.) is =

The other factor,
rs=dr
(7.2 42 )28+q

# Tt is to be throughout borne in mind that x ...z denotes a set of s coordinates, ...z, w a set of s-1

coordinates ; the adjective coordinal refers to the number of coordinates which enter into the equation ; thus,

.. 427+ w'=f?is an (s41)coordinal sphere (observe that the surface of such a sphere is s-dimensional);

%, .. +2°=f? according as we tacitly associate with it the condition w=0, or w arbitrary, is an s-coordinal

circle, or cylinder, the surface of such circle or cylinder being s-dimensional, but the circumference of the circle

(s—1)dimensional ; or if we attend only to the s-dimensional space constituted by the plane w=0, the locus
‘may be considered as an s-coordinal sphere, its surface being (s—1)dimensional. '

is the r-integral of Annex II.
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2. We now consider the prepotential-surface integral

= e dS ‘
i e e

As already mentioned, it is only a particular case of this, the prepotential-plane integral,
which is specially discussed ; but at present I consider the general case, for the purpose
of establishing a theorem in relation thereto. The surface (s-dimensional surface) S is
any given surface whatever.

Let the attracted point P be situate indefinitely near to the surface, on the normal
thereto at a point N, say the normal distance NP is=s*; and let this point N be taken
as the centre of an indefinitely small circular (s-dimensional) disk or segment (of the
surface), the radius of which R, although indefinitely small, is indefinitely large in com-
parison with the normal distance . I proceed to determine the prepotential of the
disk; for this purpose, transforming. to new axes, the origin being at N and the axes of
2 ...z in the tangent-plane at N, then the coordinates of the attracted point P will be
(0...0, &), and the expression for the prepotential of the disk will be

— de-..dz
V_j‘{“&’ ot 22 2}§s+q’

where the limits are given by a*...42><R%
Suppose for a moment that the density at the point N is =¢, then the density
throughout the disk may be taken =¢', and the integral becomes

V—? j‘{aﬂ 72+32}23+‘1

where instead of ¢' I write ¢; viz. ¢ now denotes the density at the point N. Making
this change, then (by what precedes) the value is

rs=1dp
=g P : {7.2+8°2}%S+q'

g=Positive—Nos. 3 to 7.

3. T consider first the case where ¢ is positive. The value is here

_ 28 1 ( Thly y #ids
=T 28‘2«{1*<—s+q> . +x>'s+q}’

or since % is indefinitely small, the #-integral may be neglected, and the value is

1 () Ty

—eu 8T (Ls+q)

Observe that this value is independent of R, and that the expression is thus the same
as if (instead of the disk) we had taken the whole of the infinite tangent-plane, the

# g is positive ; in afterwards writing 8=0, we mean by 0 the limit of an indefinitely small positive quantity
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density at every point thereof being —¢. It is proper to remark that the neglected

terms are of the orders
1 (/8\2 /g\2%+2
MG (e}
so that the complete value multiplied by % is equal to the constant € Flleta)

of the orders (ﬁ)zq, (E)ml“, &c

4. Let us now consider the prepotential of the remaining portion of the surface;
every part thereof is at a distance from P exceeding, in fact far exceeding, R; so that
imagining the whole mass {¢dS to be collected at the distance R, the prepotential of
the remaining portion of the surface is less than

s‘g s
.Rs+2q ;
viz. we have thus, in the case where the mass j' ¢ dS is finite, a superior limit to the

prepotential of the remaining portion of the surface. This will be indefinitely small in
comparison with the prepotential of the disk, provided only &* is indefinitely small

)s
Gs+9) —|— terms

compared with R°**, that is & indefinitely small in comparison with Rz, The proof
assumes that the mass {'¢ dS is finite; but considering the very rough manner in which

the limit j 42 s as obtained, it can scarcely be doubted that, if not universally, at least
R

for very general laws of distribution, even when ¢ dS is infinite, the same thing is true;
viz. that by taking ¢ sufficiently small in regard to R, we can make the prepotential of
the remaining portion of the surface vanish in comparison with that of the disk. But
without entering into the question I assume that the prepotential of the remaining
portion does thus vanish; the prepotential of the whole surface in regard to the inde-
finitely near pomt P is thus equal to the prepotential of the disk; viz. its value is
1 (['y°Ty

&% 8T (s +q)’
which, observe, is infinite for a point P on the surface.

9. Considering the prepotential V of an arbitrary point («...¢, ¢) as a given function
of (a...c, ¢) the coordinates of this point, and taking (. ..z, w) for the coordinates
of the point N, which is, in fact, an arbitrary point on the surface, then the value of V
at the point P indefinitely near to N will be =W, if W denote the same function of

(#...2, w) that Visof (¢...¢, ¢). The result just obtained is therefore

1 —
8211 e I‘ S+ q) ( O)
or, what is the same thing,

F is+
%‘18)5:[‘9) (8 W)s-—o
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As to this, remark that V is not an arbitrary function of (a...c, ¢): non constat
that there is any distribution of matter, and still less that there is any distribution of
matter on the surface, which will produce at the point («...¢, ¢), that is at every point
whatever, a prepotential the value of which shall be a function assumed at pleasure of
the coordinates (@...c, ¢). But suppose that V, the given function of (a...¢, e), is
such that there does exist a corresponding distribution of matter on the surface (viz.
that V satisfies the conditions, whatever they are, required in order that this may be the
case), then the foregoing formula determines the distribution, viz. it gives the expression
of g, that is, the density at any point of the surface.

6. The theorem may be presented in a somewhat different form ; regarding the pre-
potential as a function of the normal distance s, its derived function in regard to s is

2g  (I'yTq

82q+1€F( S—I—q)’

__ 1 2T+,
TR Tstg)

that is

and we thus have
AW_ 1 oTpT(+Y) o
d& T gt g P s-]-q ( - )

or, what is the same thing,

—_— (S+q) ‘2q+ldw
= ToMy Tgr\* as ),

. dW .
where, however, W being given as a function of (2. ..z, w), the notation — requires

explanation. Taking cos «...cos ¥ to be the inclinations of the normal at N, in the
direction NP in which the distance & is measured, to the positive parts of the axes of
(...2), viz. these cosines denote the values of
s ds
dlzl e o o —d‘;,
each taken with the same sign 4 or —, and divided by the square root of the sum of
the squares of the last-mentioned quantities, then the meaning is
AW _dW AW |
Tingx Cos o ... +“£ CoS 7.
7. The surface S may be the plane w=0, viz. we have then the prepotential-plane

integral
de...dz

. g “ee .

V_j‘{(a—-.z’)g. s (o2 (4)
where ¢ (like ) is positive. In afterwards writing e=0, we mean by 0 the limit of an
indefinitely small positive quantity.

The foregoing distribution-formulee then become

28+ 2g
(ﬁw‘;’( W+« e e e (A)
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and
_ T'(is+9) dW
Q——Q(F_lé)ir(g_l_——l) (62q+1 de > =0, e e e e (A*)
which will be used in the sequel.

It will be remembered that in the preceding investigation it has been assumed that
q is positive, the limiting case ¢=0 being excluded }.

q=—+%.—Nos. 8 to 13.

8. I pass to the case g= —1, viz. we here have the potential-surface integral

odS
v .ﬂ(a—x —2)24 (e—w)2} 2" T T ©)

it will be seen that the results present themselves under a remarkably different form.
The potential of the disk is, as before,

2Ty (¢ r1dr
¢ TLs J@rts)e?

where ¢ here denotes the density at the point N ; and the value of the r-integral

4 s.I‘l
—R<1+te1ms n po g - ) — I‘(gs— b

Observe that this is indefinitely small, and remains so for a point P on the surface ;
the potential of the remaining portion of the surface (for a point P near to or on the
surface) is finite, that is, neither indefinitely large nor indefinitely small, and it varies
continuously as the attracted point passes through the disk (or aperture in the material
surface now under consideration); hence the potential of the whole surface is finite for
an attracted point P on the surface, and it varies continuously as P passes through the
surface.

It will be noticed that there is in this case a term in V independent of #; and it is on
this account necessary, instead of the potential, to consider its derived function in
regard to g; viz. neglecting the indefinitely small terms which contain powers of
g .

R I write
AV 2(TL)
&="TE-De

The corresponding term arising from the potential of the other portion of the sur-
face, viz. the derived function of the potential in regard to s, is not indefinitely small ;
and calling it Q, the formula for the whole surface becomes

dV (Fl)s—‘l'l
== Ty

+ This is, as regards ¢, the case throughout; a limiting value, if not expressly stated to be included, is
always excluded.
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9. T consider positions of the point P on the two opposite sides of the point N, say
at the normal distances ¢, &', these being positive distances measured in opposite direc-
tions from the point N. The function V, which represents the potential of the surface
in regard to the point P, is or may be a different function of the coordinates (... ¢, ¢)
of the point P, according as the point is situate on the one side or the other of the
surface (as to this more presently). I represent it in the one case by V', and in the other
case by V’; and in further explanation state that s’ is measured #nfo the space to which
V! refers, " into that to which V" refers;-and I say that the formule belonging to the
two positions of the point P are

where, instead of V', V", I have written W', W” to denote that the coordinates, as well
of P' as of P, are taken to be the values (2. ..z, w) which belong to the point N. The
symbols denote

aw'  dw' awr

i =gy cose ... +-4; cosy,

dW' _aw" PALL
— g ——— cos o ... 4~ cos ¥,
ds' dx dz 4

where (cos &' ... cosy) and (cos &’ ...cos y') are the cosine inclinations of the normal
distances &, ¢/ to the positive parts of the axes of (#...z); since these distances are
measured in opposite directions, we have cos @’=—cosa'...cos y'=—cosy. If we
imagine a curve through N cutting the surface at right angles, or, what is the same
thing, an element of the curve coinciding in direction with the normal element P'NP”,
and if s denote the distance of N from a fixed point of the curve, and for the point P’ s
becomes s+ ¥'s, while for the point P" it becomes s—0"s, or, what is the same thing, if
s increase in the direction of NP’ and decrease in that of NP, then if any function ©
of the coordinates (z. ..z, w) of N be regarded as a function of s, we have

d® 40 d®_  do
ds T de’  ds T T ds"

10. In particular, let ® denote the potential of the remaining portion of the surface,
that is, of the whole surface exclusive of the disk; the curve last spoken of is a curve
which does not pass through the material surface, viz. the portion to which ® has
reference, and there is no discontinuity in the value of @ as we pass along this curve

® . de
through the point N. 'We have Q' =value of % at the point P, and Q'=value of _

at the point P"; and the two points P, P' coming to coincide together at the point
MDCCCLXXY. 4y
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N, we have then

1 __d® __ dae
Q —”d:,p - ES—,
n__d®  _ d®
V=pr =%
dW'  dW' dW" aw" . .
‘We have in like manner A N el and the equations obtained above

may be written
dW’ d@ 2 (1"1)8+1
ds T ds T T'(3s—1) &
dW" d® | 2(T'})s+!
ds = TT(Es—0)®

in which form they show that as the attracted point passes through the surface from
the position P' on the one side to P" on the other, there is an abrupt change in the

value of %Vg, or say of 0%7, the first derived function of the potential in regard to the

orthotomic arc s, that is in the rate of increase of V in the passage of the attracted
point normally to the surface. It is obvious that if the attracted point traverses the
sulface obliquely instead of normally, viz. 1f the arc s cuts the surface obliquely,

thele is the like abrupt change in the value of s

Reverting to the original form of the two equations, and attending to the relation
Q' +Q"=0, we obtain
dWI dW"_ (Fl)s+l
O Ta T T Ls—1) ©

or, what is the same thing,

(; ) dW!  gwi
=— (12%)331<d8+d8,, e (©
11. Trecall the signification of the symbols:—V',V"are the potentials,it may bedifferent
functions of the coordinates (a...¢,e) of the attracted point, for positions of this point
on the two sides of the surface (as to this more presently), and W', W" are what V', V"
respectively become when the coordinates (o . .. ¢, ¢) are replaced by (@ z, w), the coor-

"
dinates of a point N on the surface. The explanation of the symbols AR ;‘,7, is given

a little above ; g denotes the density at the point (..., w).

12. The like remarks arise as with regard to the former distribution theorem (A);
the functions V', V" cannot be assumed at pleasure; non consta? that there is any dis-
tribution in space, and still less any distribution on the surface, which would give such
values to the potential of a point (@ ... ¢, ¢) on the two sides of the surface respectively ;
but assuming that the functions V', V" are such that they do arise from a distribution
on the surface, or say that they satisfy all the conditions, whatever they are, required in
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order that this may be so, then the formula determines the distribution, viz. it gives the
value of ¢, the density at a point (z, ...z, w) of the surface.

13. In the case where the surface is the plane w=0, viz. in the case of the potential-
plane integral,

— edw...dz
V_j‘{(a—m)g...+(c—z)9+eg}%8‘%' L ¢

(e assumed to be positive); then, since every thing is symmetrical on the two sides of the
plane, V' and V" are the same functions of (.. .c,e), say they are each=V; W', W'
are each of them the same function, say they are each =W, of (...z,¢) that V is of
(a...c ¢), and the distribution-formula becomes

_ T@Es—3%) [dW
g—— —E(‘F“%)Sf( <7le_> e_—_o, . . . . o . . . (B)
viz. this is also what one of the prepotential-plane formule becomes on writing
therein ¢g=—13.
q¢=0, or Negative.—Nos. 14 to 18.

14. Consider the case ¢g=0. The prepotential of the disk is

2(l'y)
g I'Ls

(log R4+N—logs...);

and to get rid of the constant term we must consider the derived function in regard to
, viz. this is

and we have thus for the whole surface

av_ 2(T'1) 1
&= Ty @

where Q, which relates to the remaining portion of the surface, is finite ; we have thence,
writing, as before, W in place of V,

dW_ oy

g T T 8TTs

—_ T3 [ dW
€= "oiy (8 a’s)g:o'

15. Consider the case ¢ negative, but —g<%. The prepotential of the disk is here

2(T'y)s (R I'isTq .
=¢ Tis g{ <4 .. } H

or say

1.,-29
2T Tlstg)

and to get rid of the first term we must consider the derived function in regard to =,
viz. this is
2’y g +1) |

Plas+g) 7

4v2

—_— 8—24—-1
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whence for the potential of the whole surface
av - 2(l'3) (g +1)

e — . 29—1

ds — ¢ Tstg
where Q, the part relating to the remaining portion of the surface, is finite. Multiplying
by &**! (where the index 2¢-1 is positive), the term in Q disappears; and writing, as
before, W in place of V, this is

AW __ 2(Dh T +1)

82q+l

dg — 8 s+q

o TOs4g)(adW)
§T oMy Tlg+1) g o’
viz. we thus see that the formula (A¥) originally obtained for the case ¢ positive
extends to the case ¢=0, and ¢=—, but —g<%; but, as already seen, it does not
extend to the limiting case ¢g= 3.
16. If ¢ be negative and between —1 and —1, we have in like manner a formula
V_q 2T
ds — > 8 T(Es+q) ’

or say

but here 2¢-+1 being negative, the term #7'QQ does not disappear: the formula has
to be treated in the same Way as for g=—1, and we arrive at

AW 4T T(g+1)
{ I2q+l + 112g+1 }__ I‘( s-l—g) 03

viz. the formula is of the same form as for the potential case g=—3. Observe that the
formula does not hold good in the limiting case ¢=—1.
17. We have, in fact, here the potential of the disk

_o(Ty) (R® Tis )
=T é’{ —s'log s 1)} ;
whence
T=— P(IV'T)‘ ¢(2slogs),
since in the complete differential coefficient s+ 2z log # the term # vanishes in compari-

son with 2glogs; and then, proceeding as before, we find

1 dW 1 dW'" —8(I'Y)s
s'loge' ds’ + gTlogs” d¢ — I'(ks—1 )5’

but I have not particularly examined this formula.

18. If ¢ be negative and > —1 (that is, —g>1), then the prepotential for the
disk is

(I'y)s R §s+q R-%-2 -
1 ~2q+ 1 —2¢g—2° oo K™

and it would seem that in order to obtain a result it would be necessary to proceed to
a derived function higher than the first; but I have not examined the case.



PROFESSOR CAYLEY ON PREPOTENTIALS. 687

Continuity of the Prepotential-surface Integral.—Axt. Nos. 19 to 25.

19. T again consider the prepotential-surface integral

j‘ odS
{(a—)%. ..+ (c—2)*+ (e—w)2} ¢

in regard to a point (@ ... ¢, ¢) not on the surface; ¢ is either positive or negative, as
afterwards mentioned.

The integral or prepotential and all its derived functions, first, second, &c. ad infinitum,
in regard to each or all or any of the coordinates (a...c,e) are all finite. This is cer-
tainly the case when the mass {¢dS is finite, and possibly in other cases also; but to fix
the ideas we may assume that the mass is finite. And the prepotential and its derived
functions vary continuously with the position of the attracted point (@...c,e), so long
as this point in its course does not traverse the material surface. For greater clearness
we may consider the point as moving along a continuous curve (one-dimensional locus),
which curve, or the part of it under consideration, does not meet the surface ; and the
meaning is that the prepotential and each of its derived functions varies continuously as
the point (@...c, ¢) passes continuously along the curve.

20. Consider a ““region,” that is, a portion of space any point of which can be by a
continuous curve not meeting the material surface connected with any other point of
the region. It is a legitimate inference, from what just precedes, that the prepotential
is, for any point (@ .. . ¢, ¢) whatever within the region, one and the same function of the
coordinates (@...c, ¢), viz. the theorem, rightly understood, is true; but the theorem
gives rise to a difficulty, and needs explanation.

Consider, for instance, a closed surface made up of two segments, the attracting
matter being distributed in any manner over the whole surface (as a particular case
s+1=3, a uniform spherical shell made up of two hemispheres) ; then, as regards the
first segment (now taken as the material surface), there is no division into regions, but
the whole of the (s+1)dimensional space is one region; wherefore the prepotential
of the first segment is one and the same function of the coordinates (...c,e) of the
attracted point for any position whatever of this point. ~ But in like manner the prepo-
tential of the second segment is one and the same function of the coordinates (... ¢, ¢)
for any position whatever of the attracted point. And the prepotential of the whole
surface, being the sum of the prepotentials of the two segments, is consequently one and
the same function of the coordinates (a...c,¢) of the attracted point for any position
whatever of this point; viz. it is the same function for a point in the region inside the
closed surface and for a point in the outside region. That thisis not in general the case
we know from the particular case, s+1=3, of a uniform spherical shell referred to above.

21. Consider in general an unclosed surface or segment, with matter distributed over
it in any manner ; and imagine a closed curve or circuit cutting the segment once; and
let the attracted point (@...c,¢) move continuously along the circuit. We may con-
sider the circuit as corresponding to (in ordinary tridimensional space) a plane curve of
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equal periphery, the corresponding points on the circuit and the plane curve being
points at equal distances s along the curves from fixed points on the two curves respec-
tively ; and then treating the plane curve as the base of a cylinder, we may represent
the potential as a length or ordinate, V=17, measured upwards from the point on the
plane curve along the generating line of the cylinder, in such wise that the upper
extremity of the length or ordinate # traces out on the cylinder a curve, say the prepo-
tential curve, which represents the march of the prepotential. The attracted point may,
for greater convenience, be represented as a point on the prepotential curve, viz. by the
upper instead of the lower extremity of the length or ordinate 7 ; and the ordinate, or
height of this point above the base of the cylinder, then represents the value of the
prepotential. The before-mentioned continuity-theorem is that the prepotential curve
corresponding to any portion (of the circuit) which does not meet the material surface
Is a continuous curve, viz. that there is no abrupt change of value either in the ordinate
y(=V) of the prepotential curve, or in the first or any other of the derived functions
Z—Z’ %, &c.  We have thus (in each of the two figures) a continuous curve as we pass

N

QP W S

/ P P

N ™
pr P!

(in the direction of the arrow) from a point P’ on one side of the segment to a point
P" on the other side of the segment ; but this continuity does not exist in regard to the
remaining part, from P to P/, of the prepotential curve corresponding to the portion
(of the circuit) which traverses the material surface. ‘

22. I consider first the case g==—2 (see the left-hand figure): the prepotential is
here a potential. At the point N, which corresponds to the passage through the
material surface, then, as was seen, the ordinate y (=the Potential V) remains finite

. . . d ..
and continuous; but there is an abrupt change in the value of —%, that is, in the

direction of the curve: the point N is really a node with two branches crossing at this
point, as shown in the figure; but the dotted continuations have only an analytical
existence, and do not represent values of the potential. And by means of this branch-
to-branch discontinuity at the point N, we escape from the foregoing conclusion as to
the continuity of the potential on the passage of the attracted point through a closed
surface.

23. To show how this is I will for greater clearness examine the case (s41)=3,
in ordinary tridimensional space, of the uniform spherical shell attracting according to
the inverse square of the distance; instead of dividing the shell into hemispheres, I
divide it by a plane into any two segments (see the figure, wherein A, B represent the
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centres of the two segments respectively, and where for graphical convenience the seg-
ment A is taken to be small.

,
,"/
/
S
e
[£4 \‘

We may consider the attracted point as moving along the axis aa’, viz. the two
extremities may be regarded as meeting at infinity, or we may outside the sphere bend
the line round, so as to produce a closed circuit. We are only concerned with what
happens at the intersections with the spherical surface. The ordinates represent the
potentials, viz. the curves are @, b, ¢ for the segments A, B, and the whole spherical
surface respectively. Practically, we construct the curves ¢, &, and deduce the curve & by
taking for its ordinate the difference of the other two ordinates. The curve ¢ is, as we
know, a discontinuous curve, composed of a horizontal line and two hyperbolic branches ;
the curve ¢ can be laid down approximately by treating the segment A as a plane
circular disk; it is of the form shown in the figure, having a node at the point corre
sponding to A. [In the case where the segment A is actually a plane disk, the curve
is made up of portions of branches of two hyperbolas; but taking the segment A as
being what it is, the segment of a spherical surface, the curve is a single curve, having
a node as mentioned above.] And from the curves ¢ and @, deducing the curve 4, we
see that this is a curve without any discontinuity corresponding to the passage of the
attracted point through A (but with an abrupt change of direction or node corresponding
to the passage through B). And converscly, using the curves @, & to determine the
curve ¢, we see how, on the passage of the attracted point at A into the interior of the
sphere, in consequence of the branch-to-branch discontinuity of the curve ¢, the curve
¢, obtained by combination of the two curves, undergoes a change of law, passing
abruptly from a hyperbolic to a rectilinear form, and how similarly on the passage
of the attracted point at B from the interior to the exterior of the sphere, in conse-
quence of the branch-to-branch discontinuity of the curve &, the curve ¢ again
undergoes a change of law, abruptly reverting to the hyperbolic form.
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24. In the case ¢ positive the prepotential curve is as shown by the right-hand
figure in p. 688, viz. the ordinate is here infinite at the point N corresponding to the
passage through the surface; the value of the derived function changes between
< infinity and — infinity; and there is thus a discontinuity of value in the derived
function. It would seem that when ¢ is fractional this occasions a change of law on
passage through the surface, but that there is no change of law when ¢ is integral.

In illustration, consider the closed surface as made up of an infinitesimal circular
disk, as before, and of a residual portion; the potential of the disk on an indefinitely
near point is found as before, and the prepotential of the whole surface is

1 (I'})Ty
=98 Tty T V0

where V,, the prepotential of the remaining portion of the surface, is a function which
varies (and its derived functions vary) continuously as the attracted point traverses the
disk. To fix the ideas we may take the origin at the centre of the disk, and the axis
of e as coinciding with the normal, so that s, which is always positive, is =+¢; and
the expression for the prepotential at a point (¢ . .. ¢, ¢) on the nermal through the

centre of the disk is
1 (}%)ﬁ T'q
=TEgu e Mg TV

viz. when ¢ is fractional there is the discontinuity of law, inasmuch as the term changes

from 1 +1e)24 to (_le)w; but when ¢ is integral this discontinuity disappears. The like

considerations, using of course the proper formula for the attraction of the disk, would
apply to the case g=0 or negative.

25. Oragain, we might use the formule which belong to the case of a uniform (s+1)-
coordinal spherical shell (see Annex No. II1.), viz. we decompose the surface as follows,

surface =disk 4-residue of surface;

and then, considering a spherical shell touching the surface at the point in question
(so that the disk is in fact an element common to the surface and the spherical shell),
and being of a uniform density equal to that of the disk, we have

disk=spherical shell —residue of spherical shell ;
and consequently
surface=spherical shell —residue of spherical shell+residue of surface;

and then, considering the attracted point as passing through the disk, it does not pass
through either of the two residues, and there is not any discontinuity, as regards the
prepotentials of these residues respectively; there is consequently, as regards the pre-
potential of the surface, the same discontinuity that there is as regards the prepotential
of the spherical shell. But I do not further consider the question from this point of view.
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The Potential Solid Integral.—Art. No. 26.

26. 'We have further to consider the prépotential (and in particular the potential) of
a material space; to fix the ideas, consider for the moment the case of a distribution
over the space included within a closed surface, the exterior density being zero, and the
interior density being, suppose for the moment, constant; we consider the discontinuity
which takes place as the attracting point passes from the exterior space through the
bounding surface into the interior material space. "We may imagine the interior space
divided into indefinitely thin shells by a series of closed surfaces similar, if we please,
to the bounding surface; and we may conceive the matter included between any two
consecutive surfaces as concentrated on the exterior of the two surfaces, so as to give
rise to a series of consecutive material surfaces; the quantity of such matter is infini-
tesimal, and the density of each of the material surfaces is therefore also infinitesimal.
As the attracted point comes from the external space to pass through the first of the
material surfaces—suppose, to fix the ideas, it moves continuously along a curve the
arc of which measured from a fixed point is =s—there is in the value of V (or, as the

. e . . av . —
case may be, in the values of its derived functions —, &c.) the discontinuity due to the

passage through the material surface; and the like as the attracted point passes
through the different material surfaces respectively. Take the case of a potential,
g=—%; then, if the surface-density were finite, there would be no finite change in the

value of V, but there would be a finite change in the value of 4 > asitis, the changes

are to be multiplied by the infinitesimal density, say g, of the material surface; there is
consequently no finite change in the value of the first derived function; but there is,

2
or may be, a finite change in the value of % and the higher derived functions. But

there is in 'V an infinitesimal change corresponding to the passage through the successive
material surfaces respectively ; that is, as the attracted point enters into the material
space there is a change in the law of V considered as a function of the coordinates
(¢ ... ¢ e) of the attracted point; but by what precedes this change of law takes place
without any abrupt change of value either of V or of its first derived function; which
derived function may be considered as representing the derived function in regard to
any one of the coordinates @...c,e. The suppositions that the density outside the
bounding surface was zero and inside it constant, were made for simplicity only, and
were not essential ; it is enough if the density, changing abruptly at the bounding
surface, varies continuously in the material space within the bounding surface®*. The

# Tt is, indeed, enough if the density varies continuously within the bounding surface in the neighbourhood
of the point of passage through the surface; but the condition may without loss of generality be stated as in
the text, it being understood that for each abrupt change of density within the bounding surface we must
consider the attracted point as passing through a new bounding surface, and have regard to the resulting
discontinuity.

MDCCCLXXY. 4z
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conclusion is that V', V" being the values at points within and without the bounding
surface, V' and V" are in general different functions of the coordinates (@ . . . ¢, ¢) of
the attracting point; but that af the surface we have not only V'=V", but that the
first derived functions are also equal, viz. that we have

av'_av" dv' _dv' qv'__dv"
da” da’" " " de  de’ de  de

27. In the general case of a Potential,

—_ ' Pd»'l’ ... dzdw )
V-_j .{(a_m)g . _*_(0_2)2_*_(6_“))%}%3_% 5

if ¢ does mnot vanish at the attracted point (@ ... ¢, e), but has there a value ¢
different from zero, we may consider the attracting (s41)dimensional mass as made
up of an indefinitely small sphere, radius s and density ¢, which includes within it the
attracted point, and of a remaining portion external to the attracted point. Writing

2 2 2
V to deno’ce‘i2 ce —|—dii§—|—3%, then, as regards the potential of the sphere, we have

VV=— o ((Fl) )Q (see Annex IIL. No. 67), and as regards the remaining portion

VV=0; hence, as regards the whole attracting mass, VV has the first-mentioned value,

that is we have

dQ 4(1‘\1)8'}'1

+dcg+dea)v— I(ks— )é’:

where ¢' is the same function of the coordinates (¢...ce)that o isof (x...2 w);
viz. the potential of an attracting mass distributed not on a surface, but over a portion

of space, does not satisfy the potential equation

dQ Q
(Ga- - izt V=0,

but it satisfies the foregoing equation, which only agrees with the potential equation

in regard to a point (@...c,¢) outside the material space, and for which, therefore,

¢ is =0.
The equation may be written

. TGEs—=3)
e,'_— Ei‘l)8+l +dC2+de
or, considering V as a given function of (@ . . . ¢, ¢€), in general a discontinuous function
but subject to certain conditions as afterwards mentioned, and taking W the same
function of (¢ . .. 2z, w) that Vis of (¢ . . . ¢, ¢), then we have

Te—) (@
:_?ﬂ‘—%f“( +dzg+dw>W, e e e e e (D)
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viz, this equation determines ¢ as a function, in general‘ a discontinuous function, of
(# ...z w) such that the corresponding integral

gdaz . dz dw
V=f e

may be the given function of the coordinates (@ . . . ¢, ¢). The equation is, in fact, the
- distribution-theorem D.

28. It is to be observed that the given function of (@ ... ¢, ¢) must satisfy certain
conditions as to value at infinity and continuity, but it is not (as in the distribution-
theorems A, B, and C it is) required to satisfy a partial differential equation; the

function, except as regards the conditions as to value at infinity and continuity, is abso-
lutely arbitrary.

The potential (assuming that the matter which gives rise to it lies wholly within a
finite closed surface) must vanish for points at an infinite distance, or more accurately
it must for indefinitely large values of a®. .. 4c*+¢* be of the form, Constant + by
(@ ...4c+e) L It may be a discontinuous function ; for instance outside a given
closed surface it may be one function, and inside the same surface a different function
of the coordinates (@ . . . ¢, ¢); viz. this may happen in consequence of an abrupt change
of the density of the attracting matter on the one and the other side of the given closed
surface, but not in any other manner ; and, happening in this manner, then V', V" being

the values for points within and without the surface respectively, it has been seen to be
necessary that, at the surface, not only V'=V", butalso d;’_—d;;". . djl d;i", ‘gl d;ﬂ’.
Subject to these conditions as to value at infinity and continuity, V may be any function
whatever of the coordinates (a ... ¢, ¢); and then taking W, the same function of
(@ ...z w), the foregoing equation determines g, viz. determines it to be =0 for those
parts of space which do not belong to the material space, and to have its proper value
as a function of (# . . . z, w) for the remaining or material space.

The Prepotential Plane Theorem A.—Art. Nos. 29 to 36.

29. We have seen that if there exists on the plane w=0 a distribution of matter
producing at the point (@ . . . ¢, €) a given prepotential V (viz. V is to be regarded as a
given function of (@ ... ¢, €)), then that the distribution or density ¢ is given by a
determinate formula; but it was remarked that the prepotential V cannot be a function
assumed at pleasure ; it must be a function satisfying certain conditions. One of these
is the condition of continuity; the function V and all its derived functions must vary
continuously as we pass, without traversing the material plane, from any given point to
any other given point. But it is sufficient to attend to points on one side of the plane,
say the upperside, or that for which ¢ is positive; and since any such point is acces-
sible from any other such point by a path which does not meet the plane, it is suffi-
cient to say that the function V must vary continuously for a passage by such path from
any such point to any such point; the function V must therefore be one and the same

472
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function (and that a continuous one in value) for all values of the coordinates (@ . . . ¢)
and positive values of the coordinate e.

If, moreover, we assume that the distribution which corresponds to the given potential
V is a distribution of a finite mass {gdx . . . dz over a finite portion of the plane w=0,
viz. over a portion or area such that the distance of a point within the area from a fixed
point, or say from the origin (¢ ...¢) = (0...0), is always finite; this being so, we
have the further condition that the prepotential V must for indefinitely large values of
all or any of the coordinates (@ . . . ¢, ¢) reduce itself to the form

(j'g dz . .. dg)+=(a® . ..+

The assumptions upon which this last condition is obtained are perhaps unnecessary ;
instead of the condition in the foregoing form we, in fact, use only the condition that
the prepotential vanishes for a point at infinity, that is when all or any one or more
of the coordinates (« . . . ¢, ¢) are or is infinite.

Again, as we have seen, the prepotential V must satisfy the prepotential equation

2 2
(diaé te +a(’lc9+deﬂ+29+l de)v 0.

These conditions satisfied, to the given prepotential V, there corresponds on the plane
w=0, a distribution given by the foregoing formula, and which will be a distribution
over a finite portion of the plane, as already mentioned.

30. The proof depends upon properties of the prepotential equation,

(£ 2 DYy,

prl +d~2 Et o &

or, what is the same thing,

d [ pordW 4 (g AW WY _
dx(eﬁq dx>"°+dz<ql >+de< qlﬁe“)—o’

say, for shortness, O'W=0.
Consider, in general, the integral

fao. asasenf (Y (S 4 (5

taken over a closed surface S lying altogether on the positive side of the plane ¢=0,
the function W being in the first instance arbitrary.
Writing the integral under the form

‘f 1. . do de ( sgr AW AW AW dW AW dW)

. 2¢+1

29+1
dz ~dz ° -t dz dz ¢ “de  de

we reduce the several terms by an integration by parts as follows:—
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term in @—}V is = fdg/ .. .dzde We“’“‘ T fdx .dzdeW a < et C—lj—;’>,

dz
aw
is= (... awer - (do...azaew g (e ),
. dW d dW
——; is :Jﬁdx ..... dz We ™! Ee“_j‘d“" codz W («929“ de)
Write dS to denote an element of surface at the point (z... % ¢); and taking
o .. .7, 0 to denote the inclinations of the interior normal at that point to the positive

axes of coordinates, we have
dy ...dzde=—dScosa,

and the first terms are together
W
= j' W (»VY cosa ... —l—t{i—‘iv cos ry—l—% cos B) das,

W here denoting the value at the surface, and the integration being extended over the
whole of the closed surface: this may also be written

= — (e Wi as,

where s denotes an element of the internal normal.
The second terms are together

dW dW
= ... 3z d W T (e - i (e F ) + (e T>}=—jda: d2 deW OW.

We have consequently

dW\? dWN2  /dW\?2
j‘dx...dzdeezq+‘{<—ul;> +<75> +<Te> }
— j 2q+1W___ ds—‘fdﬂ, dZ d@ e2q+1WDW

31. The second term vanishes if W satisfies the prepotential equation OW=0; and
this being so, if also W =0 for all points of the closed surface S, then the first term also
vanishes, and we therefore have

(to...azaoem! (G).. + (%) + (&) }=0

where the integration extends over the whole space included within the closed surface ;
whence, W being a real function,

N0, ... =0, T =,
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for all points within the closed surface ; cbnsequently, since W vanishes at the surface,
‘W=0 for all points within the closed surface.

32. Considering W as satisfying the equation OW=0, we may imagine the closed
surface to become larger and larger, and ultimately infinite, at the same time flattening
itself out into coincidence with the plane =0, so that it comes to include the whole
space above the plane ¢=0, say the surface breaks up into the surface positive infinity
and the infinite plane e=0.

The integral j‘e“’q “W%‘—Z—ds separates itself into two parts, the first relating to the

surface positive infinity, and which vanishes if W=0 at infinity (that is, if all or any of
the coordinates a'...2, ¢ are infinite); the second relating to the plane e=0 is

lfVV (e”l“%) dz...dz, W here denoting its value at the plane, that is when ¢=0,

and the integral being extended over the whole plane. The theorem thus becomes

dW\?2 dW\ 2 TWH 2
j‘dx. .. dz cle.eQ’l“L‘{(%) .. +<W) +<”76> }
:—fw (eﬂq“"%{) de ... dz.

Hence also if W=0 at all points of the plane ¢=0, the right-hand side vanishes,

and we have
TW AW\ 2 dW\ 2
j'd .dz de qu““l{([dx ) . +<—d?> —i—(%) }:0.

dw dW aw
Consequently -7 -=0...-7>=0, =0, for all points whatever of positive space ; and

therefore also W=0 for all points whatever of positive space.
33. Take next U, W, each of them a function of (x...z, ¢), and consider the

integral
, JUAW | dUAW | dUdW
fdm“'dz‘i”?w(dx GV T de)

taken over the space within a closed surface S; treating this in a similar manner, we
find it to be

=—(erwgas—{ao... &zde e WaT,

where the integration extends over the whole of the closed surface S; and by parity of
reasoning it is also

aw
=—{ern UG as—(de... dzaeemvnW,
with the same limits of integration; that is, we have

j' e W a8 —l-fda: v dede. WD U-_—jeﬁmu s +jd:v . dade.HUOW,
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which, if U, W each satisfy the prepotential equation, becomes
f w42 as y U DY s,
ds

And if we now take the closed surface S to be the surface positive infinity, together
with the plane ¢=0, then, provided only U and V vanish at infinity, for each integral
the portion belonging to the surface positive infinity vanishes, and there remains only
the portion belonging to the plane ¢=0; we have therefore

j‘e”“\V%g de ... dz:fe”“U ‘%]Y de ... dz,
e

where the functions U, W have each of them the value belonging to the plane ¢=0,
viz. in U, W considered as given functions of (2 . ..z, ¢) we regard ¢ as a positive quan-
tity ultimately put =0, and where the integrations extend each of them over the whole
infinite plane.

34. Assume

1
:{(a—x)g. ot (c—z)Q+eQ}%“+q’

an expression which, regarded as a function of (..., e), satisfies the prepotential
equation in regard to these variables, and which vanishes at infinity when all or any
of these coordinates (x' ...z, ¢) are infinite.

We have

du —2(3s+q)e
de = {(a—a)...+(o—z)P 4T

and we have consequently

—2(§s+g)e+ _ifgﬁgy) de...dz
j‘W{(a—x)e---Jr(c—2)92+eg}>5“‘+““dx'"Olz_ <e de ) {(a—a)...+ (c—2)2+ 2}H0

where it will be recollected that ¢ is ultimately =0; to mark this we may for W
write W,.
Attend to theleft-hand side ; take V, the same function of @ . . . ¢, e=0, that W, is of
x ...z, ¢=0; then first writing the expression in the form
2s+g YeXt2dg . .. dz
v y {(a—=)?

+(c—2)%+ eg}z”q“

write a=a--¢£. . . z=c-}-ef, the expression becomes

2 (s g)er+2, evdf ... dE y v
=V.J% g e = AE T, T

where the integral is to be taken from —oo to +oo for each of the new variables %. . . &j
Writing é=re ... {=ry, where «*...+9’=1, we have d...d{=r"""drdS also
’...+&*=7% and the integral is

2= dS rs ‘dr
=( i =)o e
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where {dS denotes the surface of the s-coordinal unit sphere o2 ..+y*=1, and the
r-integral is to be taken from #=0 to r=o0 ; the values of the two factors thus are

52T Pl AT3T(g+1)
T T(%s) S)’ L4+ T DEs+g+1)

Hence the expression in question is

2(I'%)s 4T 1 —2(I'DH)sT 1
—2(z5+9)Ve I‘ls) G 2s+(§:f 1)) = (1“(?;,—);\>~+(§)Jr v,
and we have
j‘(ewdw du...dz _ —2(TY)T(g+1) v
de ) {(a—@)% . .+ (c—2)2+e T D(gs+q)

or, what is the same thing,

~T(s+q) [ 3 dW
v _g Q(F%)sm(eq de)
0 {(a—a)% . -+(C—Z)9+eg}%s+q'

35. Take now V a function of (a...c, ) satisfying the prepotential equation in
regard to these variables, always finite, and vanishing at infinity, and let W be the same
function of (...z, ¢), W therefore satisfying the prepotential equation in regard to
the last-mentioned variables, and consider the function

I'($s+9) gqﬂ
S‘Wﬁm(e do...d
V= T
{(a-—-m)Q_”_l_(c_z) ee}zs q

2

where the integral is taken over the infinite plane ¢=0; then this function (V — the
integral) satisfies the prepotential equation (for each term separately satisfies it), is
always finite, and it vanishes at infinity. It also, as has just been seen, vanishes for any
point whatever of the plane e=0. Consequently it vanishes for all points whatever of
positive space. Or, what is the same thing, if we write

_ edz . ..dz
V=V umom oo o (A)

where ¢ is a function of (z...z), and the integral is taken over the whole infinite plane,
then if V is a function of (@...c, e) satisfying the above conditions, there exists a cor-
responding value of ¢; viz. taking W the same function of (#...z, ¢) which V is of
(a...c,e), the value of g is

I'(is+q) 2g414W
Q_W<eqde),.........(A)

where ¢is to be put =0 in the function ¢* “‘%‘_f. This is the prepotential-plane theorem ;

viz. taking for the prepotential in regard to a given point (, ... ¢, ¢)a function of (... ¢, ¢)
satisfying the prescribed conditions, but otherwise arbitrary, there exists on the plane
e¢=0 a distribution ¢ given by the last-mentioned formula.
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36. It is assumed in the proof that 2¢--1 is positive or zero; viz. ¢ is positive, or if
negative then —¢ 3 %; the limiting case g= —7% is included.

It is to be remarked that by what precedes, if ¢ be positive (but excluding the case
g=0) the density ¢ is given by the equivalent more simple formula

_T@s+9)
e=TDTy

(e W),

The foregoing proof is substantially that given in GREEN’S memoir on the Attraction
of Ellipsoids; it will be observed that the proof only imposes upon V the condition of
vanishing at infinity, without obliging it to assume for large values of (a... ¢, ¢) the

M

form —————
{a%.. .+ cQ—I-eQ}f”q

The Potential-surface Theorem C.—Art. Nos. 87 to 42.

2 2 2 . .
37. In the case g=—1, writing here V:gﬁ .. .—l—%é—}—%, we have precisely, as in the

general case,
(wigas+{a... dzaewvo={viTas+{ar...a:avvw;

and if the functions U, W satisfy the equations VU=0, VW =0, then (subject to the
exception presently referred to) the second terms on the two sides respectively each of
them vanish.

But, instead of taking the surface to be the surface positive infinity together with the
plane ¢=0, we now leave it an arbitrary closed surface, and for greater symmetry of
notation write w in place of ¢; and we suppose that the functions U and W, or one of
them, may become infinite at points within the closed surface; on this last account the
second terms do not in every case vanish.

38. Suppose, for instance, that U at a point indefinitely near the point (« . . . ¢, ¢) within

the surface becomes
1

={('Z’—‘a)2~ ot (z—c)9+(w_e)9}és—% ;

then if V be the value of W at the point («...c, ¢), we have
fdz...dedwWVU=V {dz...dedwVU;

and since VU=0, except at the point in question, the integral may be taken over any
portion of space surrounding this point, for instance, over the space included within the
sphere, radius R, having the point (a...¢, ¢) for its centre; or taking the origin at this
point, we have to find de ... dz dw VU, where

1
19

U= I
R A

and the integration extends over the space within the sphere #°. .. 4-2*+w’=R"
MDCCCLXXY. S A
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39. This may be accomplished most easily by means of a particular case of the last-
mentioned theorem ; viz. writing W==1, we have

y%dSA—j‘dx...dzdeU:O,

. . dU )
or the required value is =_§3§ dS over the surface of the last-mentioned sphere.

‘We have, if for a moment 7*=a? ..+42*>+u?

du x d zd wd z d zd wd dUu dU
%2—(;3;----&-22‘ 731;)U: =—'(r2z;---+;3:~+767>‘ e

that i, PU—=5—1 _$
ds 7S

—1

d
s an hence

dU s—1
v{ e dS:Fj‘dS,

where j dS is the whole surface of the sphere 2*. .. +2°4-w’=R? viz. it is =R’ into
the surface of the unit-sphere 4*. .. 4+2°+4w*=1. This spherical surface, say

2 (T'L)s+! 4(T'L)+
Ys+1) = (—1)DE(s—1)

j'dZ is =

and we have thusj‘ dS= 4({‘2)85 , and consequently

— ATy
fdo... dedwVU= FIs—1
40. Treating in like manner the case where W at a point indefinitely near the point
(a, . .. c, e) within the surface becomes
_ 1
T{@—a) . 4 (z—0)+ (w—e)2 )Y
and writing T to denote the same function of (a, . .. c, e) that U is of (z .. . z, w), we
have, instead of the foregoing, the more general theorem

fw ds+§dx e dw WYU AT v

(gs—%)
__fU dS—l—j‘dx .z dw UVW — Fgl il ') T,
where in the two solid integrals respectively we exclude from consideration the space
in the immediate neighbourhood of the two critical points (¢...¢, ¢)and (a. .. c, €)
respectively.

Suppose that W is always finite W1th1n the surface, and that U is finite except at
the point (@ . .. ¢, ¢), and moreover that U, W are such that VU=0, VW =0, then
the equation becomes

{w T v={ug s

ds
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1

{(a—a)?... +(e—w)2}¥ ¥

41. Imagine now on the surface S a distribution ¢dS producing at a point (¢'.. . ¢, ¢)
within the surface a potential V', and at a point (a”...c", ') without the surface a
potential V”; where, by what precedes, V" is in general not the same function of
(a"...c" ¢") that V' is of (... ¢, €.

It is fu1the1 assumed that at a point (.. . ¢, ¢) on the surface we have V'=V":

that V', or any of its derived functions, are not infinite for any point (¢'...d,¢)
within the surface:

In particular this equation holds good if U is =

that V", or any of its derived functions, are not infinite for any point (¢"...¢", ¢)
without the surface:

and that V"=0 for any point at infinity.

Consider V' as a given function of (...¢,¢); and take W' the same function of
(...2z,w). Then if, as before,

U= !

{(@a—=)%. —|—(c-—-z)2 (e—w)2}#* %

d?
(- +itis) U=0,

j‘UdW’dS_‘YW’ S — (w)w,v

Plis—13)

Similarly, considering V" as a given function of (a...c, ¢) and take W’ the same
function of (#...2,¢). Then, by considering the space outside the surface S, or say
between this surface and infinity, and observing that U does not become infinite for any
point in this space, we have

i
fut¥as={wriabas;

and adding these two equations, we have

AW dW"
§U< d” d5= f( e dx”) dS~%_g 2__ V.

But in this equation the functions W' and W each of them belong to a point
(#...2,w) on the surface, and we have at the surface W'=W", =W suppose; the
dU dU)

then

term on the right-hand side thus is §W< dx’+ 7 dS, which vanishes in virtue of

leg-l-dU_O ; and the equation thus becomes

j‘U (d;zl—l- ;:;ﬂ) dS= ﬁg‘s?_%) :
that is, the point (@... ¢, ¢) being interior, we have
o rs el QUSRS ds -
4@y \ de' 1 dd' ] {(a—a)% o+ (c—2)2+ (e—w)?} T
OA2
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In exactly the same way if (@...c, ¢) be an exterior point, then we have

y ds' S—‘YWI

dw" 4(T'%
jU . ds~§W" o dS— PEIS_L)V"

and adding, and omitting the terms which vanish,

j”U(dw' dWﬂ) dS=— HIH "y

S TGs—d)
that is,
-——I‘(ls—l) aw' dw" as
4Ty \d¢ + a’s") {(a— )% (c—2)2+ (e—w)?} ¥

42. Comparing the two results with

= 0dS
V_"A{(a —x)g, ..+ (C—Z)Q—]- (G—w)g}%‘q“%’

we see that V', V" satisfying the foregoing conditions, there exists a distribution ¢ on
the surface, producing the potentials V/ and V" at an interior point and an exterior
point respectively; the value of ¢ in fact being

o=— Zg;f;ﬁ)@;‘f’ dW) . (©

where W/, W' are respectively the same functions of (x...z w) that V, V" are of

(¢...c,e).

The Potential-solid Theorem D.—Art. No. 43.
43. 'We have as before (No. 40),

fW ds+§d@~ e dw WY — 4D

T(ks—3%)
841
= (UG s+ |a... azawvvw— 20T,
where, assuming first that W is not infinite for any point (2. . .z, w) whatever, we have

1
(= o+ (o) emw)}

no term in T; and taking next U= as before, we have

VU=0; the equation thus becomes
1\s+1
j‘w 7 s — fU er dS~F4(<f D" v= f de...dzdw UVW,
where W may be a discontinuous function of the coordinates (z. ..z, w), provided only

there is no abrupt change in the value either of W or of any of its first derived functions

dW  dW aw
de " dz? dw
mass on an attracted point (z...z w); the resulting value of VW is of course discon-

, viz. it may be any function which can represent the potential of a solid
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tinuous. Taking, then, for the closed surface S the boundary of infinite space, U and
W each vanish at this boundary, and the equation becomes

)s+l —j‘ : .
]‘(ls—g)V“ dz...dzdw UVW;

viz. substituting for U its value, and comparing with

V_J" edz...dzdw

TJ{(a=a)% . . (c—2)+ (e—w)2}

where the integral in the first instance extends to the whole of infinite space, but the
limits may be ultimately restricted by ¢ being =0, we see that the value of ¢ is

_ T(s—1) (& e >
== riyr (it W

W being the same function of (2. ..z, w) that Vis of (@...¢, ¢), which is the theorem D.

Examples of the foregoing Theorems.—Art. Nos. 44 to 49.

44. Tt will be remarked, as regards all the theorems, that we do not start with known
limits; we start with V a function of (@...¢, ¢), the coordinates of the attracted point,
satisfying certain prescribed conditions, and we thence find g, a function of the coordinates
(®...2) or (x...2,w), as the case may be, which function is found to be =0 for
values of (z...2) or (¢...2z w) lying beyond certain limits, and to have a determinate
non-evanescent value for values of (¢...2) or (... 7 w) lying within these limits; and
we thus, as a result, obtain these limits for the limits of the multiple integral V.

45. Thus in theorem A, in the example where the limiting equation is ultimately
found to be a®... +2°=f", we start with V a certain function of ¢?. .. 4¢*(=#? suppose)
and ¢’, viz. V is a function of these quantities through §, which denotes the positive root

of the equation
2

x ¢
Pty
the value in fact being V:Jv ¢ ((++f?)"#d¢, and the resulting value of ¢ is found to

]

1,

be =0 for values of (2. ..z) for which 2*... +2*>f% Hence V denotes an integral

j‘ ede..
e

the limiting equation being a”. ..-2?=f?, say this is the s-coordinal sphere.
And similarly, in the examples where the limiting equation is ultimately found to be
2 2
%...—I— 7=1, we start with V a certain function of a,...c,¢ through ¢ (or directly

and through 4), where ¢ denotes the positive root of the equation

a2

e e?
m...—l—m—l—-—e-:l,
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and the resulting value of ¢ is found to be =0 for values of («...z) for which

Hence V denotes an integral,

f ede ...dz
{(d—-w)Q. .'+(C_Z>2+eg}%s+q)
2 2
the limiting equation being %u-—l*%:l, say this is the s-coordinal ellipsoid. It is

clear that this includes the before-mentioned case of the s-coordinal sphere; but it is,
on account of the more simple form of the é-equation, worth while to work out directly
an example for the sphere.
46. Three examples are worked out in Annex IV.; the results are as follows:—
First, 0 defined for the sphere as above; ¢41 positive;

V:S (1— ijQ) do...dz

{(d—x)Q.. .4 (C—Z)2+BQ}%S+Q

over the sphere 2”... +3°=f>,
_ @y I’(_fl+ D 4

This is included in the next-mentioned example for the ellipsoid.
Secondly, ¢ defined for the ellipsoid as above; ¢+1 positive ;

V=S (1—%... ZQ) dv...dz
{(

a—z)%. .. + (c—2)2+ P

2 2
over the ellipsoid J% .. +%=1,

(I‘;) T (g+1)

ety i)fta—l(t+f2 R dt,

This result is included in the next-mentioned example; but the proof for the general
value of i is not directly applicable to the value m=0 for the case in’question.
Thirdly, ¢ and the ellipsoid asabove ; g+1 positive; m=0 or positive, and apparently

in other cases,
.Z'Q zg q+m
V—‘——-—g (1—]—]“9...—?) dx’...dz
i

(a—a)%... +(c—2)2+e2{#1

over the ellipsoid as above,

(P (14q+m) c? ™ ., . ;
=T (s+g) 0 +m) U ")5( ﬁ+e~-—zm—e“> (2 VAN 2

And we have in Annex V. a fourth example; here 6 and the ellipsoid are as above :
the result involves the Greenian functions.
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47. We may in the foregoing results write e=0; the results, writing therein s+1 for
8, and in the new forms taking (@ ...c,e) and (2. ..z, w) for the two sets of coordinates
respectively, also writing ¢—4 for ¢, would give integrals of the form

jv Pde’ .. dzdw
[—alt .ot (=2 + e oot

2 2 2
for the (s41)coordinal sphere and ellipsoid a®. .. 4+2*+w?=f? and J% . -I—%Q—i—%:l;

say these are prepotential solid integrals; and then, writing g= —1, we should obtain
potential solid integrals, such as are also given by the theorem D. The change can be
made if necessary; but it is more convenient to retain the results in their original
forms, as relating to the s-coordinal sphere and ellipsoid.

There are two cases, according as the attracted point (... ¢) is external or internal.
2
For the sphere :—For an external point #*>f?; writing e=0, the equation J;;_l_—ézl
has a positive root, viz. this is §=="—#*; and ¢ will have, or it may be replaced by, this
value z’—f*: for an internal point z*<f?; as ¢ approaches zero, the positive root of the
original equation gradually diminishes and becomes ultimately =0, viz. in the formule

0 1s to be replaced by this value 0.

2 2
For the ellipsoid :(—For an external point ;—Q. .. +7Lc—9>1; writing ¢=0, the equation

ﬁ%‘@‘ .. —l—e—flfzzl has a positive root, and ¢ will denote this positive root: for an
internal point ;fé e —|—/%z< 1; as ¢ approaches zero the positive root of the original equa-
tion gradually diminishes and becomes ultimately =0, viz. in the formule ¢ is to be
replaced by this value 0.

The resulting formulee for the sphere 2*. .. 42°=f" may be compared with formulze
for the spherical shell, Annex VI, and each set with formule obtained by direct inte-
gration in Annex III.

We may in any of the formule write g= —1, and so obtain examples of theorem B.

48. As regards theorem C, we might in like manner obtain examples of potentials
relating to the surfaces of the (s4-1)coordinal sphere 2*. .. 42*4w’=/%, and ellipsoid

2

2 2
;—Q cee —|—%§—l—%: 1, or say to spherical and ellipsoidal shells ; but I have confined myself

to the sphere. We have to assume values V' and V" belonging to the cases of an
internal and an external point respectively, and thence to obtain a value g, or distribu-
tion over the spherical surface, which shall produce these potentials respectively. The
result (see Annex VI.) is

j s
H@—a)+. o4 (c=2)2 (e—w) P
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over the surface of the (s-l—l)coordinal sphere a*. .. 42’ 4w'=f7,

1 s+1 F£s
and
Pl s+1fs . . .
(( 3) J; jsl_ for interior point = <f,

where z’=a’...4¢*+¢*. Observe that for the interior point the potential is a mere
constant multiple of f.

The same Annex VI. contains the case of the s-coordinal cylinder #°. .. +2°=#?, which
is peculiar in that the cylinder is not a finite closed surface, but the theorem C is found

to extend to it.
49. As regards theorem D, we might in like manner obtain potentials relating to the

2 2 2
(s+1)coordinal sphere 2°... +2°+w’=f? and ellipsoid}% e —l—%—]—%:l; but I confine

myself to the case of the sphere (see Annex VIL.). We here assume values V' and V"
belonging to an internal and an external point respectively, and thence obtain a
value ¢, or distribution over the whole (s+1)dimensional space, which density is found
to be =0 for points outside the sphere. The result obtained is

.. dz dw
V= y (a—z)? (c—2)24 (e—w)2} ¥ %
over (s+1)coordinal sphere a°.. .—|—z2—|—fw =f2,
(1"%3)3+1 fs+l

for exterior point z>f

+1
=y 18+ ) —(4s—1)«*} for interior point z <f,
2 2
where z*=a’...4c*4¢€°.

The remaining Annexes VIII. and IX. have no immediate reference to the theorems
A, B, C, D, which are the principal objects of the memoir. The subjects to which they
relate will be seen from the headings and introductory paragraphs.

Axnnex L. Surface and Volume of Sphere a? .. .42 +w’=f*—Nos. 51 & 52.

51. We require in (s+1)dimensional space, | dx ... dz dw, the volume of the sphere
2%, .+ 24 w’=f* and j‘dS,'the surface of the same sphere.

Writing 2=fz/% . .. 2=f/&, w=f/», we have
do...ds dw=gr f1E0 .. 57 0 ... AL do,

with the limiting condition £... 4+&+«=1; but in order to take account as well of the
negative as the positive values of #...z, w, we must multiply by 2°*'. The value is
therefore

:fs—l-lj‘%"%_ .. é‘"%w-%d%. .o d; dw,
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extended to all positive values of &...&,w, such that £...4¢+4w<1; and we obtain

this by a known theorem, viz.
1)s+1

Volume of (s41)dimensional sphere=f**! ILS i

Writing a#=f%...2=f%, w=f», we obtain dS=f*d3, where d% is the element of
surface of the unit-sphere £... +&?++’=1; we have element of volume d%...ds dw
=7*dr dZ, where 7 is to be taken from 0 to 1, and thence

faz...a dw:fw ir {as=r3 {as,

that is,
(I‘l) . (I‘%)s+l )
Jas=en fae. . a as =209 (=T
I‘L)s+1
consequently‘fds—surface of (s+1)dimensional sphere=f* I*”If "
(s+3%
52. Writing s—1 for s, we have
Volume of (s—1)dimensional sphere=f* T ((ll;i)_gl),
Surface of do. —fo 212?58))’

which forms are sometimes convenient.
Writing in the first forms s4-1=3, or in the second forms s=3, we find in ordinary
space

__Any?
Volume of sphere—f3 I‘( ~f3__ o = Sf,
2 g 7r
and :
Surface of sphere= f2 f"’ Qﬁ =4zf?,

as they should be.

75ty

Axxex 11 The Integral 5 1 o8y Nos. 53 to 63.

03. Theintegral in question (which occurs anté, No. 2) may also be considered as arising
from a prepotential integral in tridimensional space; the prepotential of an element of

. '/ . .
mass dm is taken to be:dT?gq, where d is the distance of the element from the attracted

point P. Hence if the element of mass be an element of the plane z2=0, coordinates
(2, y), ¢ being the density, and if the attracted point be situate in the axis of z at a
distance ¢ from the origin, the prepotential is
p da dy
V——j‘xﬁ_l_y +€Q 38+q°
For convenience it is assumed throughout that ¢ is positive.
MDCCCLXXYV. o B
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Suppose that the attracting body is a circular disk radius R, having the origin for its
centre (viz. that bounded by the curve 2°+4%’=R?); then writing #=rcosd, y=rsind,

we have
g rdrdf
_ 7- +8€2 38+

which, if ¢ is a function of  only, is

ordr
2+ )i

=9z

and in particular if g=7"?, then the value is

. =Ly
=2 §T2+e 2\1s+g°
the integral in regard to » being taken from r=0 to r=R. It is assumed that s—1 is
not negative, viz. it is positive or (it may be) zero. 1 consider the integral
R ps—1

. (7.2+82)§8+1p

which I call the r-integral, more particularly in the case where e is small in comparison

with R. It is to be observed that ¢ not being =0, and R being finite, the integral con-

tains no infinite element, and is therefore finite, whether ¢ is positive, negative, or zero.
54, Writing 7=e+/v, the integral is

18—1 dv
——g@ (]_ _I_,U)~e+q7

the limits bemg and 0.

In the case where ¢ is positive this is

:-1*6~2q(§ 5' ) =1
2 1 oylete

o 138 T'q
F%S+9Y

viz. the first term of this is

—1
—53

and the second term is a term expansible in a series containing the powers 2¢, 292,
. 2 . . S 1 .
&c. of the small quantity %2—, as appears by cffecting therein the substitution v=—; viz.

the value of the entire integral is by this means found to be

1,2 I'is. g L xq“ltgx
= st ), A

55. In the case where ¢ is =0, or negative, the formula fails by reason that the ele

pzs 1

ment f—)% of the integrals§ , ‘fm becomes infinite for indefinitely large values of v.

Recurring to the original form‘f (—_Ji

2 it is to be observed that the integral has a
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finite value when ¢=0; and it might therefore at first sight be imagined that the factor
(r*+¢°)~*~% might be expanded in ascending powers of ¢°, and the value of the integral
consequently obtained as a series of positive powers of ¢*. But the series thus obtained

is of the form ezkfr‘”‘”“’ dr, where 2¢ being positive, the exponent —2¢—2k—1 is

0
for a sufficiently small value of % at first positive, or if negative less than —1, and the

value of the integral is finite; but as £ increases the exponent becomes negative, and
equal or greater than —1, and the value of the integral is then infinite. The inference
is that the series commencesin the form A-+4+Be*+4Ce'. .., but that we come at last when
q is fractional to a term of the form Ke=, and when ¢ is =0, or integral, to a term of
the form Ke=* log ¢, the process giving the coefficients A, B, C.. ., so long as the expo-
nent of the corresponding term ¢, ¢% ¢*... is less than —2¢ (in particular ¢=0, there is
a term % log ¢, and the expansion-process does not give any term of the result), and the
failure of the series after this point being indicated by the values of the subsequent
coefficients coming out = oo.

56. In illustration, we may consider any of the cases in which the integral can be
obtained in finite terms. For instance,

§=2, QZ—%,
Integral is {7(r*+¢%) dr, =3(r*+¢*)%, from 0 to R,
=Y R4 —16";
viz. expanding in ascending powers of ¢ this is
=3iR°+41Re% .. —3,

or we have here a term in ¢°. And so,
s=1, g=—2,

Integral is [ (r24¢*)idr, =(2"+ i)/ + @3¢t log (r++/7F¢*), from 0 to R,

=(R+{O)R /B e+ Jo log MV,

viz. expanding in ascending powers of e this is

| =1R'+ZR% ..+ $¢*log %*,
or we have here a term in ¢*loge.

87. Returning to the form

R2
@ pis—ldp

1,—2¢
56 1
) W

&€

and writing herein 0:1; , or, what is the same thing, m:.ﬁl__, and for shortness
v

# Term is 3¢t logge}—{, =3¢ (log% +log 2), which, ? being large, is reduced to 2¢*log !-{
e
5B2
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2

ey the value is
4

29
1+R

1
=to( o1 —e)as,
X

where observe that ¢g—1 is 0 or negative, but X being a positive quantity less than 1,
the function 27~'(1 —g)*~' is finite for the whole extent of the integration.
58. If ¢=0, this is

_lj‘ll—{l—(l—é&’)%s—l}d.l‘
2
b 4 &

1 13—1

x
— 3 Upa (1 b=l X g0 1 ksl
:%10g\/1+%_%‘£ =10 }dx_{_%jo f=(=a)ids

where observe that in virtue of the change made from i;(l—-x)ﬁs_l to }” {I1—(1—a)*}

(a function which becomes infinite, to one which does not become infinite, for £=0), it
has become allowable in place of j: to write ‘r—j‘x.

When ¢ is small, the integral which is the tl(;ird :erm of the foregoing expression is
obviously a quantity of the order ¢*; the first term is & (log %—l—log '\/ i:%—i), which,

. . R
neglecting terms in ¢*, is =4 log g~

j’ 7=y is
(72“‘}‘32)33

, and hence the approximate value of the r-integral

oo B (=)
=log ~ —gj;dx—T_,
or, what is the same thing, it is

R 1 l_y%s—l
=10g?—%j; dy l—y ’

where the integral in this expression is a mere numerical constant, which, when Js—1

is a positive integer, has the value

+1.S'-—1

and neglecting this in comparison with the logarithmic term, the approximate value is

R

=log —
e
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59. I consider also the case ¢g=—1%; the integral is here
e ot(1—ap-ia
—1o j:a;"-%—(l— (1—(1—a)*1 )da
=o(X—1)+}e | 011 (L—a'}do;
and the first term of this being =+/¢*++R*—e, this is consequently

S— X 1
=\/R2+62+%6§ o-41—(1—2)) do—e(1+3 j‘ r=4{1—(L—2)"11da),

. 0 0

As regards the second term of this we have ‘
— 20 H1—(1—a)r- 1} +2(3s—1) fa~¥(1 —2)rda= [2-#{1 — (1 —a)}de;

or taking each term between the limits 1, 0,

-1 :
—24+2(3s—1) F = amHl— 0y e
viz. this integral has the value
2T'LsT'}
— 24 s ;) ;
. R ps-lgy
and the value of the T—lntegral‘f e is consequently

—V/ B e+ o a1 — (L= pda—e i

which is of the form

4 3Ty
61“(1 1)

R {1—l—te1ms in RQ’ Ie{‘*’ .
say the approximate value is
LT
R—e ma

R
where the first term R is the termj' dr, given by the expansion in ascending powers
1]

of ¢*; the second term is the term in ¢7%%. And observe that term is the value of

1
%ej‘ e=#(1—a)-'de,
0

calculated by means of the ordinary formula for a Eulerian integral (which formula, on
account of the negative exponent —3%, is not really applicable, the value of the integral
being =0 ) on the assumption that the I' of a negative ¢ is interpreted in accordance
with the equation I'(g+1)=¢I'¢; viz. the value thus calculated is
I'(—4HT ~s) ——c T'iis

T(gs—3) P(gs—3)

on the assumption I't=—4T(—%); and this agrees with the foregoing value.

__26
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60. It is now easy to see in general how the foregoing transformed value

1
lo-u§ g=(1—g)*'de, where ¢ is negative and fractional, gives at once the value of the
2 « > q 8 g

2
term in ¢~%. Observe that in the integral & is always between 1 and X (= 52—_?_—R5, a
positive quantity less than 1); the function to be integrated never becomes infinite.

1
Tmagine for a moment an integralj‘ a*dx, where « is positive or negative. We may con-
X

1+a

1 X
ventionally write this :y x“dx—-j‘ x*dx, understanding the first symbol to mean ;+
0 0

"9
a@
Xl+a 11+a_01+a. X1+a___01+a
and the second to mean ——; they of course properly mean ———— and ;
1+a 14e 1+a

but the terms in 0'*¢ whether zero or infinite, destroy each other, the original form

9

1
j‘ a*dz, in fact, showing that no such terms can appear in the result.
X

In accordance with the convention we write
1 1 l 1 X 1
j 21 (1 —a)i-dy= j' 1= (1— ) da— j 211 —a) e
X 0 0

and it follows that the term in ¢7 is
1
%e‘zqf 2 (1—a)sda,
0

this last expression (wherein ¢, it will be remembered, is a negative fraction) being
understood according to the convention; and so understanding it the value of the

term 1is
:—1“8_29 F%S]'-‘q
¥ Tls+g)

where the I" of the negative ¢ is to be interpreted in accordance with the equation

I'(¢+1)=¢lq; viz. we have I‘g:é T'(g+1), :Hq%ﬁ_) I'(¢+2), &c., so as to make the
argument of the I" positive. Observe that under this convention we have

. T2(1) . _ T2(L) le
Ll (1—g)=; g OF the term is Je™™ . ;ﬁ F(%s+g)21‘(1—q)
61. An example in which 1s—1 is integral will make the process clearer, and will
serve instead of a general proof. ~ Suppose ¢=—4%, ts—1=4, the expression

1 8 1 8 1 6 13 20
y 2= (1—a) do :y (x7"—4a™ "+ 627 —4dxis:t-a7 ) da
0 0
is used to denote the value
R A
—47.2401 - 75

=7(—‘1“%+‘1§§"—%+'2;7), =7(‘“‘42“%—%+T%)’ =%5.13.27° —5.13.27°
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But we have
3slqg T5T(—4) 24 T'(—1) —hs
T(s+q)~ TG—p — .20 18 ¢ = IT(—1)75.13.27
agreeing with the former value.
62. The case of a negative integer is more simple ; to find the logarithmic term of

1
%e‘”f 2t (1—a ) da,
X

we have only to expand the factor (1—x)¥~? so as to obtain the term involving 277 ; we
have thus the term
I'}s

—q) I'(3s+¢)

1
3on) ami (=) o ot de

B T'is
=4(= ey ey 8 X

2
where log %:log (1—|—%), =2 log %+2 log \/ 1 +1—e{—2, so that neglecting the terms in

2 .. R . .
—l%q &c. this is =2 log —, and the term in question is

—g T'is
=(= ) T T Tty ©

The general conclusion is that ¢ being negative, the r-integral

=1y
j‘ (72+62)—s+q

has for its value a series proceeding in powers of ¢%, and which up to a certain point is
equal to the series obtained by expanding in ascending powers of ¢* and integrating
each term separately ; viz. the series to the point in question is

R 3s4q R=%2 ,  ds+g.ds+g+1 R

4
—9g— 1 —2q—2°¢ 1.2 —oqg—4% o

continued so long as the exponent of ¢ is less than —2¢; together with a term K¢
when ¢ is fractional, and Ke=* log—l; when ¢ is integral ; viz. ¢ fractional this term is

oy Tzslq 5 T's

1,—2q

T(s+g)? = 2%  singr D(ls+q) D(1—g)’

and ¢ integral, it is
=(=yer=g ¥
P(1—g) I(s+9)

log

63. It has been tacitly assumed that %s+¢ is positive; but the formule hold good if
1s4-g is=0 or negative. Suppose s-+¢ is 0 or a negative integer, then I'(gs+¢)=c0,
and the special term involving ¢ * or ¢~ log e¢ vanishes; in fact in this case the
r-integral is

:y R7.%s——1 (7.2 + 62) —(is+q) d?",
0
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where (7°+4¢°)~6**0 has for its value a finite series, and the integral is therefore equal to
a finite series A+Bé*+Ce'+&e. If 4s4¢ be fractional, then the I' of the negative
quantity 3s4¢ must be understood as above, or, what is the same thing, we may, instead

1\2
of I'(3s+g), write o s +Q§P%?(1 =5’ ; thus, ¢ being integral, the exceptional term is
oy I'$ssin (3s+¢)r . T'(1 —qg—13s) R
=S =y 0B

for instance, s=1, ¢=—2, the term is

L . Ddsin (—3m) T3 Fog R
96 (I'3)2. T3

or, since I'j=%. % I'y, and I'3=2, the term is +3g¢'log -, agreeing with a preceding

result.

Axxex II1. Prepotentials of Uniform Spherical Shell and Solid Sphere.—
Nos. 64 to 92.

64. The prepotentials in question depend ultimately upon two integrals, which also
arise, as will presently appear, from prepotential problems in two-dimensional space, and
which are for convenience termed the ring-integral and the disk-integral respectively.
The analytical investigation in regard to these, depending as it does on a transformation
of a function allied with the hypergeometric series, is I think interesting.

65. Consider first the prepotential of a uniform (s-1)dimensional spherical shell.
This is

ds
IR R R T e S
the equation of the surface being 4* ... +2*+w’=f?; and there are the two cases of an
internal point, @?... +¢*+¢*<f? and an external point, @’... +¢*+¢€*>f>.

The value is a function of @*... 4 ¢®*4-¢*, say this is =#?; and taking the axes so that

the coordinates of the attracted point are (0...0,z), the integral is

_ j‘ s

TJ a2 (e —w)2 D
where the equation of the surface is still 2°. . +z2—|—w2— f2. Writing a=f%...2=f¢,
w=fw», where ... +§*+44’=1, we have dS= S E , or the integral is

iy —

Assume E=pux, ...5=pz, where 2*... +2°=1; then p’+°=1. Moreo{fer, ds...dZ,
_—_103“ dp d2, where dZ is the element of surface of the s-dimensional unit-sphere

— wdw

. +2*=1; or for p, substituting its value /1 —&? we have dp—T = and thence
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£...d{=—(1—o*)""'wdwd3. Theintegral as regards p is from p=—1 to +1, or as
regards » from 1 to —1; whence reversing the sign the integral will be from w=--1
to +1; and the required integral is thus

" 1—-w =1 dw d3, 2)39=1 doy
""‘f j - 2/{,/(,0—1—/69)2‘8'“1, _f fdzj‘ Qufw+x2)2s+q’

where [dS is the surface of the s-dimensional unit-sphere (see Annex L.),

_2l's)°
- Tgs
and for greater convenience transforming the second factor by writing therein w=cos 4,

(Fl)s

the required integral is =10 into

sin*—10 df
27 f —2xfcos 0+ x2)BTe

which last expression (mcludlng the factor 2/*, but without the factor g i ))> is the ring-

integral discussed in the present Annex. It may be remarked that the value can be at
once obtained in the particular case s=2, which belongs to tridimensional space, viz. we
then have

e sin 6 df
V:27rf2‘f0 (fQ—QXfCOSO-}-%Q)q*—l

:% (f2—2af cos §+#7)

= A== (F2) 7,

which agrees with a result given, ¢ Mécanique Céleste,” Book XII. Chap. II.
66. Consider next the prepotential of the uniform solid (s+-1)dimensional sphere,
Ve 5' .. dzdw
{(a—a)? +(c—z)2+(e—-w)9}%“+q’

equation of surface 2. .. -|-z2~|—fw2:f2, and the two cases of an internal point z<f,
and an external point z>f (a®. .. +c*+e*=x* as before).

Transforming so that the coordinates of the attracted point are 0...0, #, the integral
is

5' . dzdw
{Z’Q _I_ZQ_i_(x_ )9}284'9
where the equation is still 2°... 4-2°4w’=f*. Writing here #=7£...2=r%, where
g...4¢=1, we have dz...dze=r"drdS, where d3 is an element of surface of the
s-dimensional unit-sphere ... 4+4*=1; the integral is therefore

T drdZdw

- {2+ (x_w)g}%ﬂq

y y 75~V drdw
- {4+ (x—w)% w)n e

where, as regards 7 and w, the integration extends over the circle 7*4+w?=#?. The value
MDCCCLXXY. oc
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. 2(I'}
of the first factor (see AnnexI.) is -——%l—l and writing 9, # in place of r, w respectively,

2ol'sy

the integral is = I‘ into

29

j’ Y=V dzdy
(o= ye

over the circle 4 4-7°=1*; viz. this last expression (WlthOUt the factor I‘(FI; ) is the disk-

integral discussed in the present Annex.
67. We find for the value in regard to an internal point z <,

— (Fl 8+ s+1f t 2 a i 2\ —3s+g—1
which in the particular case ¢g= —7 is

=ty (- )4 P

viz. the integral in ¢ is here

="y = (- p)

Vo P (S,

— 1 1 1
3$—% +3%

or we have

It may be added that in regard to an external point = >, the value is

(I'g)+! 41 22 \i-apmie 2)—dokg-1
V=rgrora—g/" j‘ (S 2= 2 )mrgioa(t 4 f 7) e de,
which in the same case g=— % is
)

—_r__)f”“ y (t+fo—w) (e f?) e,

where the #-integral is

3 —~8+1 2 Lx—e-l -3
__.51 (t+f )—;s—~ Q(t—{—ﬁ)"““"? dt ——,1‘ + x x . = ,‘l -l:
2 2 272

and the value of V is therefore

. (I‘%)s+l fs+1
TT(s+E)
. . . . a? az  d®
Recurring to the case of the internal point; then writing V:w- ot gt g and

observing that V(z*)=4(1s+1), we have

4(I‘%)s+l
(“ 2)

VV=—

a

(in particular for ordinary space s+1=3, or the value is f/fi—T, =4, which is right).

w
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68. The integrals referred to as the ring-integral and the disk-integral arise also from
the following integrals in two-dimensional space, viz. these are

f ¥ 1dS 5‘ v ldxedy
{(m~x +?/2}28+q9 {(x,_x)a_'_ye}%ﬁq’

in the first of which dS denotes an element of arc of the circle 2+4%’=4#?, the integra-
tion being extended over the whole circumference, and in the second the integration
extends over the circle #*4-y*=7; »'~* is written for shortness instead of (3?)}~Y, viz.
this is considered as always positive, whether # is positive or negative ; it is moreover
assumed that s—1 is zero or positive.

Writing in the first integral #=# cos 4, y=F sin 4, the value is

—f0 J" _ (sind)rdd
—2xfcos 0+ x2)H+ ’
viz. this represents the prepotential of the circumference of the circle, density varying as
(sin 8)7", in regard to a point #==x, y=0 in the plane of the circle; and similarly the
second integral represents the prepotential of the circular disk, density of the element at

the point (z, y)=y'"", in regard to the same point 2=z, y=0, it being in each case assumed

gd‘ar
ds+2q

that the prepotential of an element of mass gdz upon a point at distance d is =

69. In the case of the circumference, it is assumed that the attracted point is not on
the circumference, z not =#'; and the function under the integral sign, and therefore the
integral itself, is in every case finite. In the case of the circle, if z be an interior point,
then if 2¢—1 be =0 or positive, the element at the attracted point becomes infinite ;
but to avoid this we consider not the potential of the whole circle, but the potential of
the circle less an indefinitely small circle radius ¢ having the attracted point for its
centre; which being so, the element under the integral sign, and consequently the
integral itself, remains finite.

It is to be remarked that the two integrals are connected with each other; viz. the
circle of the second integral being divided in rings by means of a system of circles con-
centric with the bounding circle #*4-7°=#", then the prepotential of each ring or annulus
is determined by an integral such as the first integral; or, analytically, writing in the
second integral #=7 cos ¢, y=7 sin §, and therefore dady=rdrd, the second integral is

_ (sin §)s-=1 48
j‘ d¢5‘¢ 24 %2— 2y cos )7

viz. the integral in regard to 4 is here the same function of 7, = that the first integral is
of f, #; and the integration in regard to 7 is of course to be taken from 7=0 to =f.
But the é-integral is not in its original form such a function of 7 as to render possible
the integration in regard to ; and I, in fact, obtain the second integral by a different
and in some respects a better process.
70. Consider first the ring-integral, which writing therein as above w=fcos4,
902
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y=fsin 4, and multiplying by 2 in order that the integral, instead of being taken from
0 to 27, may be taken from 0 to =, becomes

(sin§)*~'df
=2 y —2xfcos §4+x9)PH
Write cos 20=4/x; then sin —2—0::,\/1—43, sin §=221—a); dd=—a " (1—a)da;
cos §=—142zx; =0 gives =1, d== gives #=0, and the integral is
C)s—— f j‘ 28 ]d$ ,
{(f—l— x)2—4xfx}*"’+q

()s-»lfs y a,.-is—-l (1 _m)fs—l da
—(ftrptu (1—uz)*e >

if for shortness u_—_--4—:f)§ (obviously w<1).

The integral in @ is here an integral belonging to the general form

H(a, B, 7, u)—:_f ' (1—a)f (1 —uz) vdu,

viz. we have -
o ge=1 fs
Ring-integral =i II(Ls, s, 4s+q, u).
71. The general function Il(«,(,y, u) is
T'al’
H(OL, Ba Y /M):]_"(T“_F% F(“y Y, &% +Ba ’LL),
or, what is the same thing,

I
F(OL, B’ Y u):my:_j‘j H(O‘: Y—a, 6’ ’L&),

and consequently transformable by means of various theorems for the transformation of
the hypergeometric series; in particular the theorems

F(“a B, Ys u):F(BJ %y Y ’M),
Fla, B, g, u)=(1—u)~*PF(y—e,y—0,v,u4);

and if v= <w) , or, what is the same thing, u::ﬂﬂi—, then
1+4/1—u (1+
(e, B, 28, w)=(14+~/0) F(e e —B+%,0);
in verification observe that if =1 then also v=1, and that with these values, calcu-
lating each side by means of the formula

y(y —a— Lol
F(a, [3, Y, 1):1:‘%%%5—@%5 H(“a B, Y 1)_ }%2‘?;))

the resulting equation, ¥(«, 3, 203, 1)=2*F(«, a— 43, 8+3, 1), becomes

il it O 22aﬁLV 1>F(Oﬁ‘*()“)
(Qﬁ—“)l’ﬁ resg—«)l'B—a+s)
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that is
P(Qﬁ—Qa)
TB—a)TG—ut3)

*—I‘E@__ —_ 2241.
TRT(B+4)

221}
which is true, in virtue of the relation I‘FI‘E? T =2%1,
2

72. The foregoing formule, and in particular the formula which I have written
F(a, B, 28, u)=(1 +/0)* F(e, «—B+1%, B+1,v), are taken from Kummer’s Memoir,
¢ Ueber die hypergeometrische Reihe,” Crelle, t. xv. (1836), viz. the formula in question
is under a slightly different form, his formula (41) p. 76 ; the formula (43), p. 77, is
intended to be equivalent thereto ; but there is an error of transcription, 20 —236+1, in
place of 343, which makes the formula (43) erroneous.

It may be remarked as to the formule generally, that although very probably
II(, 3, v, w) may denote a proper function of u, whatever be the values of the indices
(«, B, 7), and the various transformation-theorems hold good accordingly (the I'-function
of a negative argument being interpreted in the usual manner by means of the equation

I‘x—— I'l+4e), = I‘(2—|—7;) &ec.), yet that the function Il(«, (3, y, %), used as de-

w+D
noting the definite integral (x‘*“ (1—2)f~' (L—ux)~" dx, has no meaning except in the
Jo

case where « and 3 are each of them positive.

In what follows we obtain for the ring-integral and the disk-integral various expres-
sions in terms of Il-functions, which are afterwards transformed into #-integrals with a
superior limit oo and inferior limit 0, or z°—f*; but for values of the variable index, ¢
lying beyond certain limits, the indices « and (3, or one of them, of the II-function will
become negative, viz. the integral represented by the II-function, or, what is the same
thing, the Z-integral, will cease to have a determinate value, and at the same time, or
usually so, the argument or arguments of one or more of the I'-functions will become
negative. It is quite possible that in such cases the results are not without meaning,
and that an interpretation for them might be found; but they have not any obvious
interpretation, and we must in the first instance consider them as inapplicable.

738. We require further properties of the Il-functions. Starting with the foregoing
equation,

F(a, B, 28, u)=(14+~/v)" F(2, a— B+, B+, ),

each side may be expressed in a fourfold form :—

F(a, 3,26, u) (1++/0)* F(e, a—f+13, 844 v)
=F(B, «, 23, u) =1+ 0 Fla—B+3a,3+3,0)
=(1—u)fF2p—a,B,28,4) |=(14+/v)*(1—0)***FB—at}, 2—a,B+40)
=(1—uf~F(52B—028,u)  |=(1+/vf* L—vf* = F@p—a, f—at} f+10)
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where, instead of (1-4-4/v)* (1—v)**=%, it is proper to write (14-4/0)* (1 /" v)*-%; and

then to each form applying the transformation

F(“, ﬁ’ Vs u) I'a F 1—1(“’ 7, Ba ’M),
we have
2B
Tal'(28—2) H(“V; 2B—a, B, u)

T2
Wléﬁ (B, 8, a, u)

= (=P~ ;g ey rs 2B 4, s )

—(—upry I,Pf[f_a (e, 28—, 28— 2, )

:(1_'_\/5)2“ I‘acF(([g3+a-){—2 H(“’ B-“_I_%’“_ﬁ"‘%’ ?J)

5)
=(1 \/— 2a ( )1 — i 26—
(14-+/) Ta— (28 —a) N(e—p+3, 2B—0, C{: v)

+3)
—'(1+\/”2ﬂ(1 \/)2’3 . ﬁ—(u—|— ))Fu - O(B—a+3, 0 2B—a,0)

= (L3 (1= 0P figa= T

+ )
P(a—

_é.) H(gﬁﬁ“a 0"‘"6"}'%) ﬁ_“'l'%a ’U)-

I select on the left-hand the second form, and equating it successively to the four

I (B+73)

right-hand forms, attending to the relation e =211, we find
\2e O1-28 PﬁF 1 1
H(B,B,w,u):(l-}—\/v) 21 Tal'(B—a+1) (e, p—a+3, a—p+3%,0)
~\oa 01— Igry
:(1_.]_\/,0)2112 28 F(a‘ﬁ'l“—l“)[w(gﬁ*—a)n(“_@_l"%, 26_05,06,/0\/
TBT'L

=1+ )% (1— L) i e [f—at DT NPE—e+3%, a, 28=—a,v)

Igri

“(1"‘\/” # (1—a/ o) 2% I2—a)[(a—B+1) N(2B—a,a—p+5, B —-a+35,0).

Putting herein f=13s, a=3s-+¢, the formule become

- I'lsT'L
T1(3s, 38, 35+ g, u)=(1 4/ v)+* 27 5 e s+q§F H(QS—I—Q, $—¢5+¢0) .
s+ 1—8 281—‘ e
=(14++/0) 2 TR+l (Es—q) n(z+g, %3""‘% 35+, 0)
299)1—¢ 2SP L Lo —
=(14++/0y (1—+/v)72 —¢)T(&s+q) (5—¢, 35+ 35— ¢, 0)-
I'LsI'S

=0 L=/ 0) 2 o 13s—23+¢ 31— ),

(L)

. (IL)
o (I‘II. )

. (IV.)



PROFESSOR CAYLEY ON PREPOTENTIALS. 721

where observe that on the right-hand side the II-functions of I. and IV. only differ by
the sign of ¢, and so also the II-functions of II. and IIL. only differ by the sign of ¢.

‘We hence have

— 1 I‘
II(%s, 38, 3s—¢, u):(l—i—\/v)“z‘l 2"3.17*—‘)}—@ I(gs—q, 5 +Q, —q,0);

and comparing with (IV.),
H(ﬁs, 25, 23'|‘_(_7: ’LL) (”l”i—’\'/v) H(Esa 25, 28 7 u)

74. The foregoing formula,

s-—lf
(f s+2q

4x . . . .
where v= (f_‘_———{;—)g, gives, as well in the case of an exterior as an interior point, a conver-

Ring-integral =5, I1(3s, s, $5+¢, v),

. . . . . 4
gent series for the integral ; but this series proceeds according to the powers of (—J%;

We may obtain more convenient formulee applying to the cases of an internal and an
external point respectively.

[ — 2
75. Internal point z<f, \/1 "“:J;'TZ’ and therefore v:;—g.

3+Qv% —q

¢
(s

2 +g’ %_,;.S‘—g, %S—I-g

K\ o+ I 2P
Msisdton= (5 2 rgnr—g B

() e it
f PE+gT(Es—q)

)
s R S
)

f+e\* (f—x\™™ 1-s Tysl's
=) (F) 2 rpemgrir (-0t +od -

where the Il-functions on the right—hand side are respectively

)

=
\Ia

I

\|x

}H

[

e e R e R R DR
= | T | = /5 e ([ Py

=fo (RTINS =g, e = )
e o= I e R e T

. . . ¢ . ..
the ¢-forms being obtained by means of the transformation U=y e ViE this gives

L=y ey (SP—R)(E4]?) (f2=r?)dt
l‘Tj 22 f dx=

whence the results just written down.

lJ—a=
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‘We hence have

. . f Pgsl's ” ts+g—1 2 2\—23s '2\—-g—1%
Ring-integral == F(§s+;)I‘é—g) 5; P (o f 2 ?) B (e f2) R O

. LT} ° . o .
=L TRt ), 0 A e

, I‘;sFl -1 ) 2\—q—% 2)—28tq
= ' mgearierg |, T GRP =) )

2

=ty ), E PR

As a verification write =0, the four integrals are

© a1t
N

Tatedt _.f?q——s +’]) (35—9)
0 (t+f2)28+ ’ Ples+2) 7

LA TG )
o (i—|~f2)§s+5’ P(zs'l' %) i

® fis-a-1 s Ths—g)T(h+9)
0 (t+f9)%8+%’ f “S-i-i) >

and hence from each of them

— fr Fas+9l'G—9)
K Fgs+3) 2

1 TisI'%
Ring-integral =+; o Ty s L

which is in fact the value obtained from
-1 4
Ring- mtegral_ Fx ){”q H(Qs, %8, 38+ ¢, (Hgﬁ)

on putting therein z=0; viz. the value is

o e . 1 2-T1s.T'hs
=T ([ mapide, = T

— 2
2 , and therefore @:{—2°

+/
wbf\ . TLTy .
(38, 38 b5+, u)=(¥) 2 I’(—s+g§I‘ H(2S—|—g, 3—¢ 3+4 ];;2)

. X+f a+ig 1—s F SF f
=(% 2 T TG0 o U(d e b—girel)

__<x+f>< f) 1= s___FLsIE;H_) II( —q.55+¢q,3s—¢, 2)

=) G v

76. External point z>f, \/1—u:’;

8= 5+¢ % Qafe>
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where the IT-functions on the right hand are respectively
. 1 x§s+q-—l(1_m) ~9=3dx »20+1 ® 1 . .
= y E—fa)its | T L_ff S =Y ()

e (e | e 00
~”+2q£*mj§+7 """ =Ry L_ﬂtq ==yt (E4f%) vt

. Lg=a-3(1—a)ite=1dy e ° ) - N
— 2qyo (R —f z)i—a _(xQ—fQ)—wL_ﬁt (=) (t4f2)P*edd,

—_— 1w%3—q+1(1_x)q—%dm x—2q+l ® (R ¥ . 1gmg— 1
= f (2 —fPa) =0 =<x‘2—f2)—2qyﬂ_ff R U At L (2 i Sl
we have then

fsxl s I SFI “ —38+q¢ 2 2 #s+g—1 2\—q—%
ng-mteglal_(n fQ)ZQI‘(%S+q)I‘(~—q)j;Z fzt (R e (RS

fe 3Ty R o a\g—i 2 —lsm
=(xg_f2)2qr(%+g)r(%s_g)ﬁ v (G2 (EHf) e

2_f2
s TisTL e o -
- riBhaall Pty ey

fsxl—s TisTL @ o 1ege .
e e M e e GV

Observe that in II. and IIL the integrals, except as to the limits, are the same as in
the corresponding formule for the interior point.

If in the Z-integrals we put ¢-+x’—f® in place of ¢, and ultimately suppose # inde-
finitely large in comparison with f, they severally become

N et T is+all=y
— zstqfiste — q s—q
5‘ (t—l“% f) t (t+7ﬂ) ! dt f (t’l‘ Q)—S+z zq S+%) ’

2 2\g—1 +1 2\ —2s— t; 7 ldt 20—s ( +g)F( S—q)
—_ 2 q — 9
y (t I P f )q t (t+4) ﬂdlf_jv (t Q)ls+— — T’

((twprymrens @ayra=| Tl LSO ey,

et ]dt —og—1 I (Es—q) ' (5 + )

f (i I A (B S dt—)r i Tls+d)

and they all four give

w[»—‘

S TasTy

Ring-integrd*m TUs 11y

which agrees with the value

5= 4x 23_
—%ﬁn( 3% 28, 23“|‘Q, (n+:;:)2,» = x3+2q (ls’ 2% 23—]—9, 0)

when ; is indefinitely large.

ct
=}

MDCCCLXXY.
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77. We come now to the disk-integral,
y—lde dy
{oep g
over the circle a®+g°=f*. Writing #=#+¢ cos ¢,y=p sin ¢, we have da dy=¢ dg dg,
and the integral therefore is

b

sin'=1 ¢ dp do
g™
where the integration in regard to ¢ is performed at once, viz. the integral is
1 .
2 feyseraas:
or multiplying by 2, in order that the integration may be taken only over the semicircle,
y=positive, this is-
1 .
%_gjv(e"”) sin"™' ¢ dg,
the term (¢'~*2) being taken between the proper limits.
78. Consider first an interior point z<f. As already mentioned, we exclude an
indefinitely small circle radius ¢, and the limits for ¢ are from g=¢ to p=its value at the

(8] r

circumference ; viz. if here #=fcosd, y=Fsin ¢, then we have fcosf=z+¢ cos,
f'sin 6=p¢ sin @, and consequently

e'=x"+f*—2xf cos 4,

) f. fsing
S _— - — st naseeariiortred
n ¢ o 510 4, Nt —2xfcost

and the integral therefore is

1 S lsint=14 1—2g b e
t—q¢ ({xg-!-,/?—Q:gfcosﬁ}%”q“—E s q})d@‘

gl—2g

As regards the second term, this is =— 7 _gj'si'n"'l ¢ dg, =0 to ¢=u, or, what is the
2

same thing, we may multiply by 2 and take the integral from ¢=0 to q5=72£. Writing
then sin ¢ = +/2, and consequently sin*~' ¢ d¢ = Ja*~(1 — 2)~* dz, the term is

1-20  TleT'L P .
22 and the value of the disk-integral is

=TI TG+
=/ sinl9dg el Dhel'y
T i) W —2uf oos FFT T =g Tt 4T
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-1
%)
g

But we have

. i b—
sin §D=‘f—%nfe, cos <p=[i0%~—x,
and thence
__ [fsinb _J{f—xcosb)dd _
tan q)_fcosa—u’ sec’¢ d‘p“m““ ’
that is

J(f—= cos 6)df J(f—x cos 6)db
do= ¢ s =f2+ x* —2xf cos 0
or, what is the same thing,
1{(}”— 2) + (f2+ %2 ‘)xfcose)}.
J?+#*—2xf cos 6 ?

and the expression for the disk-integral is therefore

__%fs—‘j'”sins“‘e{(fg——ug)+(fg—l—nQ—ancosB)}da ¢ Tk}

~i—qJ, {f?+#2—2xf cos §}3+4 TI=¢T(sts )
79. Writing as before cos %Gz\/ x, sin é—é):\/ 142, &c., and u= " _,_?)2, this 1s
9s=2 fo= (ff—»% =2 Tkl
(l_g)(u+f)s+2q——2{ (1) o TI(%s, 8, s+ ¢, w)+1I(Ls, 38, s +q—1, u)} ZeT@s+y)
As a verification observe that if x=0, each of the II-functions becomes
'l
__(xzs— (1 x)‘&-l da, 23 23’
. ,98—2 f1-2 TisT'L 2 1
hence the whole first term is="-. %_5 - 2;8 2| viz. this 15_{l ; F(;s_{ @ and the
complete value is
1 Tis I}

(Ls_l_;){fl Mgl

1

5=
vanishing, as it should do, if f=e.
80. In the case of an exterior point z>>f the process is somewhat different, but the

M,

A

result is of a like form. We have
Disk-integral= i{?‘f( g/ M=o sin o dg,

¢, referring to the point M' and ¢ to the point M. Attending first to the integral
§ei~*sin*~" ¢ dg, and writing as before f cos d=zx-¢ cos @, Jsind=psin ¢, this is

= j' sin*~'dp i
{u9+f2—2xfcos0}§8+q
5D 2
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1 e (S0 (= %2) + (f* + %2 —2uf cos 6) 1O
“if (f%+%*—2fx cos §)zs+e ’

the inferior and superior limits being here the values of § which correspond to the points
N, A respectively, say -+, and §=0; hence, reversing the sign and interchanging the
two limits, the value of —j'g"%’ sin®~' dp is the above integral taken from 0 to . But

similarly the value of +§gl‘“29 sin*~'4 d¢ is the same integral taken from « to = ; and for
the two terms together the value is the same integral from 0 to #; viz. we thus find

1 fe— T anS— 105 o (32— 2__
Disk-integral-éf lf sin =10 -— (x®—f?) + (f>+ »*—2xf cos 0) }df

-t 0 (f% 4 2«2 —2fx cos §)#+e 5
i iti o 4 . .
viz. writing as before cos %é:\/ x &c., and u= (;er—{fc)% this is

§—2 fs—1 %2 —f2
2(%__;) (x _{f)s+2q—2{_ (x +.}]f)2 . H(%Sg %S: ‘%3 +9, u)+n(“21‘8a “12“83 %S“!‘g"‘l)}

81. As a verification, suppose that # is indefinitely large: we must recur to the last
preceding formula; the value is thus

fa S"sins“’6<—cose+‘7—(f)

3stg 2
(1—-2—‘fcos 0)
x

gt
0

viz. this is

=(~l~:#;;—2~5:;5vwsins"9{ —cos §4-[1—(s+2¢) cos™d] {}d@,

0

where the integral of the first term vanishes; the value is thus

=@1%;§§Wsins‘ 101 —(s+2q) cos*d] db,

2 0
where we may multiply by 2 and take the integral from 0 to 7—; ‘Writing then
sin 6=~/z, the value is

(}‘“_j';“);ﬁqu; a1 (s4-2¢)(1—2)}(1—2) da,

I

. : o TS /o (s+2¢) Ty $—9¢
where the integral =551 (1— %s+{>’ =T@s+d) Ll

and hence the value is

+1 1 1
J* 3 TF

A T +4)

viz. this is=—577) ¥ do dy, over the circle 2°4-y°=F", as is easily verified.

82. Reverting to the interior point z<f,
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Disk-integral
Qs—-Zfs—l . 1—2¢g I‘%S]_“_glf
= GG s s 3 sk g, )+ 3 dsg— L) =T o oy

then reducing the expression in { } by the transformations for II(3s, 4s, ts+¢, %) and the
like transformations for I1(%s, 5s, ts+¢—1, %), the term in {} may be expressed in the
four forms:—

PysTh  (fr?
TGs+qT—g) fro 0O

21——s

i_<1—£>H(ls+ + )+2S+Q I;LS_'_ —1.8— .__L_,_ f>_i
L 7 ] 9’2 932 Q’fz 1=y (2. q 59— —3 g’fﬁ _!3

T'isTL (f+,‘)s+2q-—2 .
TG +qT(3s—q) foru— nto
f(l—”> ( t 38— 35+ )-l- 2+QH( 14q,3s—qg+1, ds+q—1 "Q>—|
Lo\ fQ > 2 952 ’fg 13+q ’ 2 22 ,fQ _J’

PETh  (f4i(—n)n
TG—glGste) 0

21—8

21—3

2\ 71

r %Q xQ _%_ + —1 '
[0(i—g 3 d—0 )+ (1-75) ¥ B(i—g bte-Lds—g+15) |

BTy (fHR'(f—
TEs—qTG+g)  F-" mto

((bs—gd+ed-0. )+ (1=5) T2 0 (B—g+L —3+ad-0.7) |

21-—8

83. The first and fourth of these are susceptible of a reduction which does not appear
to be applicable to the second and third. Consider in general the function

oao—1 . )
(1—’1))“(0&, Ba 1_6: 1))"" T H(“_la B'l"la _Ba 'U) ;
the second Il-function is here
f‘ma-za—x —uz)da;
0
viz. this is

-t 1 (. d
=T (1--49.1--fz;;.:)rs—a—_fifo v (g 1w,

or, since the first term vanishes between the limits, this is

:-——B—— fv“" (1—2.1—v2)'(14+v—202)dz,

a—1

= P H1+)TI(s B, 1B, 0)20. | w(l—a.1—ve)~'dat.
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Ience the two IT-functions together are

=(1 —1)—|—1—|—?))§1.Z‘“"‘(1—a:.1—vx)ﬁ“‘dx—2§1vx.x““‘(1 -z 1—va)fdr,

0 0

=2 j 11— a1 —va)da,

that is '
(1—0)I(e, B, 1—B, 0)+= 5 (a—1, B+1, =B, v)=2T1(x, B, —B, v).

‘We have therefore

%2 28+ 1 x
(1-}"2)1_1(%3'*‘9, 2= 2+g’ ﬁ)+ Sé——qg <28+g— ’ 2 - +g’ Q)

2
=21(ls+g. =4, —4+4 J5)

and from the same equation written in the form

H(“""]a B'l']-: "‘Ba afl (l_v)H(“, B’ 1"‘63 v):z ;_Bt‘i H(aa B? _;Ga 7)),

we obtain

2 _"%'l‘ 2 . 2
H(%S e ‘5“*‘9, ‘%‘—Q: }2)"" %s_qq<1—%>n<%8—g+l, ———%——l—g, %—ag, }é}

9
= il 2+[I)H( s—q+1, —%5+9¢, %_Q’}?)

15—
84. Hence the terms in [ ] are

T (g g g, )
T st (b—q) frrue {5549, 51, 2+Q,f27

_oi(—hg) ThsTh (f40)" (=)' 1 (1o i
F(gS—q—I—l)I‘( +9) Foa H(és g+1, —5+g, %—q,fg),

respectively, and the corresponding values of the disk-integral are

I'isl'y 1—2g 1 ** e~ TleI'L
TE=g)T(s+9q) f {35+ 31 _2‘|‘Q:f2> Iy T

-—I‘%SI‘l 2__ 1-2¢ 1 1 1 xQ gl—2¢ %s]_"ué
% ¢+ DIQ +q>( ) (et~ de 2) 10

which we may again verify by writing therein =0, viz. the II-functions thus become

I(stg) T@—q) . 1 Tls—g+)T(—1+0)
rgerp  nd [T

and consequently the integral is

1 T'LsTL -
= L TH (prn_ o)
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85. But the forms nevertheless belong to a system of four; from the formule

H(“a Ba Y ’I))

— Tt = T aHB—7, %, 1)
=(1—0v)" IR, oy atPB—y, v)
=(1—0f "y pe i T +B =1, 7,8, 2)
writing therein e=%s+¢, p=%—¢, y=—14+¢, we deduce
O(¥s+g, 34— —¥+40,0)
= B OPE=D T~ Ltg, ds—g+L, ds+4,0)
=(1—v)™™ | H(z—g, 4s+¢ ys—g+1, v)
=(1—) s et 8 (s =g+, —3+ 3—0, )

and the last-mentioned values of the disk-integral may thus be written in the four forms:

TG= q)ﬂ:s_;q) S H(%S+% = —%+9,};) —term in ¢,
p(;+;)£("fflq+l) i ( e -+l s+g fz) w o
ﬁg:—q_)%l}s;iﬁ (f—-}ey—gqﬂ(%-—q, 3+e w—g+1L }‘;) - s
1‘(%+-q“)£(%—’§-%-q%l)(f’”ﬁf)l_gqn(%s-g"'l’ AR %;—q,;—;) T

and since the last of these is in fact the second of the original forms, it is clear that if
instead of the first we had taken the second of the original forms, we should have
obtained again the same system of four forms.

86. Writing as before 3:_;11—9- ******* &c the forms are
F%SP% 2 2\ 2 “5‘& 15+ g1 2 .2 m,%s+§~l “2 —Ligmg —tarim
I‘(%—-q)I‘(-&s-{—q) (f ) \ ¢ (t+f % ) (t+f ) dt—term in g
—I3sI's s oyi—arf -t ,2\0—% 2)~ds— —_
FGFgTE—gi )/ Py ™) i (fpfr—ay () di—=
T T4l ]"““ fmt~Q—% (t+f2__z2)—q+% (t+f2)—§s+q~1dt.__
L= les+q) - »o
—T'isTL Yo e S
TEs—g+1)TGE+9) 5 4 (t+ff’—'zg) B () de—
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87. The third of these possesses a remarkable property: write mf instead of f, and
at the same time change ¢ into m’, the integral becomes

v orarg | )~ ) tem i

and hence writing mf=f-+3f or m=1 —[—a—f, and therefore m?=142 if, the value is

/ f
3Ty s+1 ) it 2 2\—ds+g—1 :
W]‘ j; 4 2{t+f —z +ff(t+f )} (1) df—term in .

2
Hence the term in f'is

P2SF s+1 q—3 2__ 2 —q-73 2\—38+¢q
=2(— g+ ) L i /0, RS

F-2'S F

i £ i = i),

=0f into expression

where the factor which multiplies 9f is, as it should be, the ring-integral; it in fact
agrees with one of the expressions previously obtained for this integral.
88. Similarly for an exterior point z > f; starting in like manner from, Disk-integral

_ (i— )2( 2._{;;4—29—2{ x+fH(7S’ 1s, Ys4q, u)+II(3s, s, 2s+g—1, u)}

and reducing in like manner, the term in { } may be expressed in the four forms

g THTE  (erfy™
TE+gT (=g »

— (1D (3s4a =g H0 L)+ B (3stg—1, §=g, ~340.7)).

into

e TETY )™
TG+g)Tths—g) w5

— (=L =0 st L)+ L T(—d4g =gt Ldste—1,0) ]

o THTE x+f)s—‘(x—f)*‘~"”‘-t
S o) Ve - mto

[~Ti(=0 350 =g, L)+ (1=0) 22 13— g, Bsbg, do—0s ),

ST 1 S (5 R
=T (79 45 e

2\ .1 2
['“H %8_97 ’é_{"q, %""g: {;)_I_(l—{c;i %82_:}.: H(%s—g'i"la "‘%"I‘Qa °—q, ff)].
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89. For the reduction of the first and fourth of these we have to consider

—(1=0)II(z, B, 1—B, 0) + 5~ (a—1, B+1, —, v);

viz. this is
(—14v+1+0) jnx““(l——a:. 1—wg)f-'de—2 j v, (1= . 1—ow)-da,
0 0
=20 .ylx“‘l(l —z)1—a.1—wvz)'dz,
0

=20 Tl(s, B+1, —B+1,0);
that is,

—(1—v) II(e, B, 1—B, 1,B+1, -8, v)=20I1(e, f+1, —B+1, ).

[T repeat for comparison the foregomg equation,

+(1—0) (e, £, 1~ 0) + 5= M(a—1, B+1, —B, 0)=2T1(z, B, —B, v);

by adding and subtracting these we obtain two new formule]; for reduction of the
fourth formula the equation may be written

B

—TI(e—1, B+1, =B, 0)+(L—v) 2w TT(e, B, 1—B, 0)=—2 £ oT1(z, B+ 1—B+1,0).

a—1"
90. But it is sufficient to consider the first formula ; the term in [ ] is

22— LeT'L X+ f\o+2-2 f2 o
:F(%Hq)ls“(%—q) ( x ) J,'[ﬁ H(%S-I-Qa%—q,%—l—g,—f;),

and the corresponding value of the disk-integral is

_%_ I‘L s+1 fQ
=F(%S+Q§P?%mq) ,{;2« H(%S‘HZ, =03t ,79):

which we may again verify by taking therein z indefinitely large ; viz. the value is then
1 s+1 .
:F(;;i 5 Kfsﬂ,q, as above. It is the first of a system of four forms, the others of which

are

=R (342 fs—a+L dstes),
F(§S£;j;17 — f;( fz) (%—Q,%erq,%s—qul,g),
F(—S—gff)lf 5+9) 1:;? ( )l ’ (”3—94‘1’%4'9’ 2 9’{;)
f

And hence, writing as before =

&c the four values are

MDCCCLXXY. S E
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0

ST S ) M A A G Rl

I%SI% s+1/.,2 1—2 - 2\g—4 ~1g—
AT s —giny S (F=S7) qy 3 (b fr =) (G ) 1
=TG+orG—g 7 | e R G PRl
—_ %SI% -f$+: ’ —%5— 2)38— -8
T gt DT +g) = §, ey

where we may in the integrals write #+#°—f* in place of 7, making the limits oo, 0;
but the actual form is preferable.

91. In the third form for f write mf, at the same time changing # into m¢; the new
value of the disk-integral is

iy o
e R M G R G Rt

nﬂ

Writing here mf=F4-3f, that is m=1 +i—{, m“':1+g%f, and observing that if —g+4%

2
be positive, the factor (m*(¢-4f?) —z*)~*** vanishes for the value = i—g~f2 at the lower
limit, we see that on this supposition, —¢ -3 positive, the value is

R
=+ qT—g) /

e R s L ) M N Rl F

JKri-f?
viz. the term in 9f is =9/ into the expression

I‘QSFV B

209 rEergra—g I f (R =) ),

J
that is into

P SP -3 2 q—3 2\ —2s+q
=l W R Cr Rl

which is in fact =0f into the value of the ring-integral.

92. Comparing for the cases of an interior point z<f and an exterior point = > f, the
four expressions for the disk-integral, it will be noticed that only the third expressions
correspond precisely to each other; viz. these are: interior point, z<f; the value is

a2 TlsDlg
T—q T(is+q) S+q)

where, if §—¢ be positive (which is in fact a necessary condition in order to the appli-
cability of the formula), the term in e vanishes, and may therefore be omitted: and
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exterior point, z>f'; the value is

1sT'L S P " . S
o T I G R P R

K2—f2

differing only from the preceding one in the inferior limit z*—jf* in place of 0 of the
integral. 'We have 3 —g¢ positive, and also 4s+¢ positive; viz. ¢ may have any value
diminishing from % to —3s, the extreme values no¢ admissible.

ANNEX IV. Examples of Theorem A.—Nos. 93 to 112.

93. It is remarked in the text that in the examples which relate to the s-coordinal
sphere and ellipsoid respectively, we have a quantity 4, a function of the coordinates
(@...c,e) of the attracted point; viz. in the case of the sphere, writing @*... 4¢’=#’,
we have

2

2
fg—_gﬁ-%:l,

and in the case of the ellipsoid

a?

c? (f__l
f2+0--- +]l2+9+9—— ’

the equation having in each case a positive root which is called §. The properties of
the equation are the same in each case; but for the sphere, the equation being a quadric
one, can be solved. The equation in fact is

8 —b(e+4»—f*)—ef*=0,
and the positive root is therefore
0=2{42— /(¢ + 2 —f2)P +4e f2L
Suppose e to gradually diminish and become =0; for an exterior point, z>f, the

value of the radical is =#’—#*, and we have §=x*—f*; for an interior point, = <f, the

rt

2
value of the radical, supposing ¢ only indefinitely small, is =f*—z*4- fg__:g ¢, and we

2 2
have 6:—12—32<1+~Jf-p—2{£>, :7,6?[?9’ or, what is the same thing, %:(l —}%); viz. the

«2 fP—x
positive root of the equation continually diminishes with ¢, and becomes ultimately =0.
If = or e be indefinitely large, then the radical may be taken =e¢’4-#’, and we have
4 indefinitely large, =&+ "
94. Every thing is the same with the general equation

a? c?

62
Fro T t=h
the left-hand side is =0 for /=c0, and (as § decreases) continually increases, becoming
infinite for 6=0; there is consequently a single positive value of § for which the value
is =1; viz. the equation has a single positive root, and 6 is taken to denote this root.

5E2
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In the last-mentioned equation, let e gradually diminish and become =0 ; then for an
exterior point, viz. if

2 2 2

a c . a ?
B +3:> 1, the equatlonfg—_re. .. +h—9~+—9—_—1
has (as is at once seen) a single positive root, and 4 becomes equal to the positive root
2 2
of this equation; but for an interior point, or Z... 473<1, the equation just written
f this equation ; but f interior poi J‘f <1, the equation just writt

down has no positive root, and ¢ becomes =0, that is the positive root of the original
equation continually diminishes with ¢, and for ¢=0 becomes ultimately =0; its value

.. . ¢ a? c? .
for ¢ small is in fact given by 5= (1———2 e /?> Also @...¢, e or any of them inde-

finitely large, 4 is indefinitely large, =a*... +¢*+¢%
95. We have an interesting geometrlcal illustration in the case s4+1=2; 4 1is here

determined by the equation
a® b2

prtarti=l
2 2
viz. 0 is the squared z-semiaxis of the ellipsoid, confocal with the conic }U—Q+';/—Q=1, which

.. . o0 b? .
passes through the point (a,5,¢). Taking ¢=0, the point in question, if % + g—2>1, isa
point in the plane of a7, outside the ellipse, and we have through the point a proper

. o bR
confocal ellipsoid, whose squared z-semiaxis does not vanish ; but if %+97< 1, then the

point is within the ellipse, and the only confocal ellipsoid through the point is the
indefinitely thin ellipsoid, squared semiaxes (/7 ¢° 0), which in fact coincides with the
ellipse.

96. The positive root ¢ of the equation

a? 2 e?
J,: ].——‘m. -—m——g‘, :0

has certain properties which connect themselves with the function

O, =0~ (012 .. 0+12)

We have (the accents denoting differentiations in regard to 4)

dd 2a a4 1 2a
|, Y —
Va7 2=0 O =5 e
where
a? c? e?
J'..’:~(ﬁ2~‘67é . —]-W-i—a@,
and we have the like formule for . .. @, B
dc’ de

a d@ ¢ ede 92 aQ Q
b4ftda Rt J’{(0+f) et } =2
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and to this we may join, z being arbitrary,

- a df e di 2 a? 2 e2
b+ 2 04n+f2"" +6+lz9.6+n+lﬂ+a.6+n :

P S TR ey dc+6+n =T
Again, defining V4, O4 as immediately appears, we have

] N 1 4

Vid, (m) +(az) » =g 4 =7

and passing to the second differential coefficients, we have

a2 8a? 4a9J”'
=G I I

where
C

o 2 &2
J":—2{(9+f2)3 ce e +(9+ﬁ2)3+0_3}’

: . | | a% a2 . 29+1 dj __4q+2 .
with the like formule for ... TP g Joining to these =y e obtain
a2 dQG a% ‘)g+l db

né, = (dTﬂ ) a’c""_l_a’e2 e Ee)
2 (1 1 1+ (2q+ 1)
=7 {o+f2 T

8 4J"
— (=35 (),

where the last two terms destroy each other; and observing that we have

e 1 1 29+1
e — Y R N =
@_'_§<9+f2-~-+0+h2+ ] )3

2/ 20 40/
Dg_J’( >’ =—Jer

2 2
97. First example. #’=a’... +¢? and 4 is the positive root of Fx.?o’l'%:l'

the result is

V is assumed :j t‘q“‘(t +1?)~#dt, where 41 is positive.
0

I do not work the example out; it corresponds step by step with, and is hardly
more simple than, the next example, which relates to the ellipsoid. The result is

e=0, if 2%.., 4-22>F7,

. P(23+q g A\, 2 2 ",
g_—(m'_'_])f <1— j >, lfx--.-"'z '\'f 5

2 2
S (1 —%%Qi_;«)qdw 1

{(a-—-x)ﬁ. - (C—Z)Q-{-e‘z}%“""q,

hence the integral
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taken over the sphere 2°... +2°=f",

%I‘(qul) -1 Vs
) 5‘15 (t4F2)-vdt.

98. Second example. 8 the positive root of J@% ot 6+6 =1; ¢+41 positive.

Consider here the function
V= f A (RN LE Y
]

this satisfies the prepotential equation. We have in fact

N_ gl BV_ o a
de— " Y da’ da®— da da>
d*V d?V
with the like expressions for -4 o ‘ VEE also
2¢+1dV__ 29+1db
‘“‘*‘é““ de e [lﬂ.

Hence
OV=—000—-60'V,,

or, substituting for 004 and V4 their values, this is

46/
=—0 (- jip) @47, =0.
Moreover V does not become infinite for any values of («...c¢, ¢), ¢ not =0; and it
vanishes for points at o ; and not only so, but for indefinitely large values of any of the
coordinates (a...e, ) it reduces itself to a numerical multiple of (@ .. 4c*4¢€*)#*;
in fact in this case § is indefinitely large, =a’...J-¢*+4¢*: consequently throughout
the integral ¢ is indefinitely large, and we may therefore write
1
sty

g5

@ . 1 ' . ©
‘T: ‘; t““Q"‘l .t_isdt, - —%S—l—g (t—ié‘—‘l)o R

bl

o/

that is

—ls+g (@...fc+e) e,

The conditions of the theorem are thus satisfied, and we have for ¢ either of the
formulze.

_TEs+q) ,, _W,wli(, s+q) sr 1@ W
(I‘l qﬂq (6 qW)m (I‘I)SP q+l) ¢ de )0

(in the former of them ¢ must be positive; in the latter it is sufficient if ¢4+1 be

positive).
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99. We have W the same function of (x...z,¢) that V is of (a...c, €); viz. writing &
for the positive root of
2 2'2 eQ
f@:}:)\ e +m+_)‘\=1,
the value of W is

= f FI VA . R,

2
Considering the formula which involves ¢*W,—first, if 2 . —|—f—g- >1, then when ¢ is
g j 7

=0 the value of A is not =0 the integral W is therefore finite (not indefinitely large),
and we have ¢¥W =0, consequently ¢=0.

2 2
But if ;—Q e +%< 1, then when ¢ is indefinitely small, A is also indefinitely small;

Q ~2
viz. we then have - jq ;72 ; the value of W is

We(foo ) (Tt =(f g
A ’
and hence
(33+¢) 1 o T(s+q) 2\
Ty Ty q( ) 17 =gty ) (1- : --hcz> :
100. Again, using the formula which involves <e2”“ %V) ; we have here t%f: —0 gg,

or substituting for ® and Z,g their values and multiplying by ¢**', we find
g Y —ggura gy @,

2¢+2 fj—q—2 a? c? et ‘2 2)—%
=22 *2 {1 [i}3+0)9+(7ﬂ¢6‘)@+'072] (9-—[—_](‘3—[—71) s,

and therefore

dW . z? c? e . )
e+l _Jg_‘)ezqw;\ ¢—2 [(, ——— +m+;\§ 1(7\‘|‘,]“' . .7\+7L2)‘5.

2 2
Hence, writing ¢=0, first for an exterior point or J% .. ~|—Z—2>1, 2 1s not =0, and

the expression vanishes in virtue of the factor ¢***; Whence also ¢=0; next for an
2

interior point or % .+ /ﬂ<1 A is =0, hence also (1 —pe ]ZQ> is infinite;

and neglecting in comparison with it the terms -

(7{”;—)\)@- &ec., the value is

2(3) (e =2 (A= =) )
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and we have as before,

T'Es+q) 2%\ 1
=) Tig+1) (f+- ) <1’ E ""i?)'

101. Hence in the formula

j‘ .dz
V=) ooy +(c— R
:j‘ £ (At R,
]
¢ has the value just found, or, what is the same thing, we have

g <1—;f—; ZQ) dz .
1

a—z)2... +(c—2)? +62}”8+q

2 2
over ellipsoid;% et —;—%2:1,

( %(1(};(“19"‘1 (f ])f t- q—l(t_l_f2 t+7lz)_“dt,

102. We may in this result write e=0. There are two cases, according as the

2 2
attracted point is exterior or interior: if it is ex’cerior,;ﬁ—2 - +]%>1, ¢ will denote the

2

2 2 2
positive root of the equation fga+ gooot /ZQC+ 6:1 ; if it be interior,}% ces —|—>,%< 1, ¢ will

2 22\ 2
S(l_%..._q ... d

{a— o o=

be=0; and we thus have

_(TT(g+1)
I'(3s+9)

(P;)~IS:(_IQ_~;;1-) (f.. k)f e . EA7) T dE, for interior pomt f el

(f.. l)j Nt L - B)EdE, for exterior pomtf ...—I—/%>1,

but as regards the value for an interior point it is to be observed that unless ¢ be nega-
tive (between 0 and —1, since 1-4-¢ is positive by hypothesis) the two sides of the
equation will be each of them infinite.

103. Third example. We assume here

_y -

I— a? A e
TSR T R 8

where

T=t=1 (b f2 . e 1),
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and, as before, 4 is the positive root of the equation

Q cQ eQ

T TR 6
1s4-¢ is positive in order that the integral may be finite ; also m is positive.

104. In order to show that V satisfies the prepotential equation OV =0, I shall, in

the first place, consider the more general expression,

J=1— =0.

V:j a1 T,
o+

where 7 is a constant positive quantity which will be ultimately put =0. The functions
previously called J and @ will be written J, and ©,, and J, ® will now denote

2 2

S
b4/ bt +h® 04y

O, =04 (0+7+f*... 00412

whence also, subtracting from J the evanescent function J,, we have

J, =1—

a* ® e?
J:”<6+j'9.6+n+j9'"+6+k9.0+n+/z9+0.6+n>’
say this is
J=4P;

and we have thence, by former equations and in the present notation,

@ dy e df 2
b+n+f2da’" +9+n+h2dc+9+nde Jo 2

v AZT,

In virtue of the equation which determines 4, we have

VA _ —2% av (" i meo 0% o
%—:j;ﬂdtml lt+fQT V= oﬂdt{ ml z_l_—j—g—l—m(m 1)1m-2 (——t_‘_fg)a}l
ds 2 ds

___Jm@_; _ m—1{ __ had ==
da md ( e+n+/‘2> da I}
and thence
— I —2a ®d0 l
b+n+/2 )
d di\?
—aJ ®)(za)
mey @20
—J"O s
with like expressions for ... %Z, %%’

MDCCCLXXY. 5F
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Also

e

2Q+1ﬂ—§ dpmIn =4 =2

2g+1

de 5
and hence

o 1 1+(2g+1
DV—j‘ dtly 2m1 {t+f9 — et (;Z )}T

+m(m—1) 12, 4{(t+f9)9 t+h -+ } ]

"1 a di ¢ e di
+amJ @<0+n+f9da +6+n+/ﬁdc+0+nde>

= 0°0)(() -+ () + (%))

2 2 2
_Jm®<d6 & | d% Qg+1de>

d@ - VaeteT e @
105. Writing T', T' for the first derived coefficients of I, T in regard to ¢, we have
& c? e? T 1 2q+2
I,“(t+f2)9"'+(t+h2)9+fé’ T:—%<t+f2 +t+h9+ >
and the integral is therefore

@ !
j dt (ZmI’"“ el
0+n

:j dt(4m I T 4-dm(m—1)I"-21'T),
6+9

1)I7=2, 4T ) :

® d
=\ dtdm_, (I"'T);
t£+n " at ( ) ’
viz., I”7'T vanishing for =0, this is

=—4m J" 1O,

Hence, writing (J”®)' instead of — (J ®), we have
OV=—4mJ" '@

SN L
+4mJ ®<6+n+ﬁda +e+n+ﬁdc+0+ad¢)
— (") V.0
—Jre Ob;

yiz. this is
OV=—4mJ»'e

+8mI™'@. JE,
0
1
_4(.]”711@)!;}_";,

m ®O, .
+4J"0 3/0,
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or, instead of (J”®), writing mJ”'J'O+4J" @/, this is

DV:_4mJ 10

‘We have here

—2P+T)—1T ,@ (0'9,—00),).

2 1 2 ! :
_ZP—I—J:(Z {(0+ﬂ+fg)2_(0+ﬂ+f2)(0+f9)+(9+f2) } . t+e {( )2 (9+ﬂ)6+02}

a? c? e?
{9+f9)9(9+n+f %) +(9+h2)9(0+n+hg)9+99(9+n) }
=»". Q, suppose.

Also ©'0,— 00, contains the factor 7, is =4M suppose. :
106. Substituting for J, J'—2P+J, and ©'0,— 00, their values 7P, 7Q, and zM, the
whole result contains the factor #”*!, viz. we have

4 m+1 Pm 1
OV=—"" (Q@—I— >
and if here, except in the term #"*!, we write 7=0, we have
& ? 2
P=gre s Tt =T

Q 62 eQ
V=g T T ="

M= G')c>®0" — @ol 29

and the formula becomes
12
OV=—4 m+lJ Im— 2{1 J r/!@ +J l(@oﬂ &)} ;
0

or (instead of J,, ®,) using now J, @ in their original significations,

a? 2

Q 1
T=l—pim. . — e and O=07 (04 L 041,

this is
OV=—trrym2 17047 (0" %’—2) k
or, what is the same thing,

— __477ﬁ+1 Jim—2@ {_1‘_ JH/_I__J/ (9’)!} .
= 5 ® ;

viz. the expression in { } is

[ @ c? ¥ 1 @ c? e? 1 &
'"[(6+f2)4"'+ 0+ 52 4+54‘]+5[”a+f”“'+(o+ﬁ2)9+ [(6+j )""+(e+/ﬂ )

We thus see that 7 being infinitesimal [0V is infinitesimal of the order #®'; and hence
7 being =0, we have

DV:O,’
5r2
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viz. the prepotential equation is satisfied by the value

V= y " g1,
9

where m+1 is positive.
107. We have consequently a value of ¢ corresponding to the foregoing value of V

and this value is
—_ T@Es+9 em,gl_vz)
§ 2r+T (g +1) de ] o=y

where, writing 2 for the positive root of
22 2 &
AP TR

We{ (1) S R
we thence obtain ’
2 2 2\ m—1
D=l =2 (1= = =) T

de
22 22 AN _1 dA
”(1_@"'_W_I> S VRS KR

we have

or multiplying by ¢**', and substituting for % its value

gf
A

2

- a2 z
{(A+f2)2'"+ At B AQI

we have
dW ® Qme2at2 22 22 2\ "t y .
A _j; dt. — = <1_t+ﬁ”'_t+lﬂ"7ﬁ> -+ 0

Qp20+2
Agte 22 22 2\ ™ . .
Lt (1= ) P i),

) hd

S
fotr -+ o

where the second term, although containing the evanescent factor

12 £ ¢
A+ AR A)

is for the present retained.

108. T attend to the second term.
2 2
1°, Suppose Z,...4+Z >1, then as e diminishes and becomes =0, & does not become
f% H]
zero, but it becomes the positive root of the equation
2? 22

2—-0

l— i —asi
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hence the term, containing as well the evanescent factor ¢*** as the other evanescent

22 22 A™ .
faCtOI' (1 }‘\‘Tf—eoo.—m——}\-> ) 18 —0.

2
2o, Suppose fg —|—2—2<1, then as ¢ diminishes to zero, A tends to become =0, but ‘ii
. . 22 22 2. . . ) . 2 22
is finite and =1— j 5+ - —7p Whence - isindefinitely large; and since o f“’)Q'"_I_ P
becomes = —f‘ +7ﬂ’ which is finite, the denominator may be reduced to ;;, and the term

therefore is

=_2<e§> (1~Aif" A+/ﬂ X) SRR A

=21 =) (L = 2= ) (0

which, the other factor being finite, vanishes in virtue of the evanescent factor

1= 2 2 e\
AT AR A) T

Hence the second term always vanishes, and we have (¢ being =0)

2q+2 2 L
R

109. Considering first the case ¥ —]— >1 then as ¢ diminishes to zero, A does not

fQ
become =0; the integral contains no mﬁmte element, and it consequently vanishes in
virtue of the factor ¢**2

But if }”Q —|—%2<1, then introducing instead of # the new variable &, =e;, that is

=p U=

, * and writing for shortness,

R=1—" ch
=le——s...—
Py B

the term becomes |
—fig. 2n(R—gyg (f4 I ])

where, as regards the limits corresponding to ¢=co , we have £=0, and corresponding to
t=x we have £ the positive root of R—£=0. But ¢ is indefinitely small ; except for
indefinitely small values of £, we have

R=1— f}... —%, and (f‘”’—{-«?...lz2+§>-%:(f'.._k)~l;

and if ¢ be indefinitely small, then whether we take the accurate or the reduced
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expressions, the elements are finite, and the corresponding portion of the integral is
indefinitely small. "We may consequently reduce as above ; viz. writing now
2* 22
R: ]. —j—.g. .o }),c“',
the formula is

e %V:Ld% 2m(R—E"E(f .. B)7
— —2m(f...h)" .f}zg B(R—E);

1
or writing £=Ru, the integral becomes =R**"} du u*(1—u)"~", which is
0
_LA+QI'm) v,
I'(14+g+m) ’
that is, we have

2q+1 dW-—*—Z(f ]L)_l P l+q)P(l+m)

I'l+q¢+m) )
and consequently
— PGs+q) -1 PA+gT(1+m) poan
Q 2(1‘1)31‘ 1+g (f ) F(l +q+m) Rq bl
that is
2 TEs+q)T(1+m)
e=(/- CHT (A gtm ©

viz. ¢ has this value for values of (z...z) such that % -|— <1 but is=0 if & +%z>1.

f f* £
110. Multiplying by a constant factor so as to reduce ¢ to the value R?*”, the final

result is
2 2 m
S (1-2... ig)“ lz .. dz
V= STk
[(

a—2)2 4 (c—2)% ..+ 2T

the limits being given by the equation

2 2
;‘2 =1

is

___P( VI (14 g4 m) ¢ \™ 0 2\
= e ()| (i) CHF 4,

where 4 is the positive root of

In particular if =0, or
22 z2\q+m

V—S(l——p —7 de ...dz

I
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there are two cases,

exterior, f—«: -I— >1 § is positive root of 1— f2 %2:0,
interior, & fQ —I— <1 0 vanishes, viz. the limits in the integral are « , 0;

g must be negative, 14q positive as before, in order that the #-integral may not be
infinite in regard to the element ¢=0.

It is assumed in the proof that m and 1+4¢ are each of them positive ; but, as appears
by the second example, the theorem is true for the extreme value m=0; it does not,
however, ‘appear that the proof can be extended to include the extreme value ¢g=—1.
The formula seems, however, to hold good for values of m, ¢ beyond the foregoing limits;
and it would seem that the only necessary conditions are 4s=4¢, 1+m, and 1+4¢-m,
each of them positive. The theorem is in fact a particular case of the following one,
proved, Annex X. No. 162, viz.

4 l_ﬁ:"-—i dz...dz
V_—.S ( / h) i
1 (@—2)% + (c—2)2 4 2}

over the ellipsoid ;—; . —1-3?:] ,

— (( 3)°(/ s?g e S ) (1 —0)” qj' 777'¢(0+ (1 —o)2)da,

I &2

2
where ¢ denotes oot +5: assuming ¢u=(1—u)**", we have

R Al
¢(e+(1—0o)r)=(1—0)"(1—a)r*™,
and the theorem is thus proved.
111. Particular cases:

0 S (1 > ..dz (Pl SP 1+q f h)j‘ dt t—1- ](t+f f—l—hQ)__
=05 Ve o Rt '

Cor. In a somewhat similar manner it may be shown that

(1 vde...dz N .
SW—) <) )HQW—%%Q (f-- 7)f dt L e

Multiply the first by @ and subtract the second, we have
S(l o iﬂ) (a—x)dz...dz T
{la=a)?e 4 (c—2)2 e T I‘(l8+¢1)

or writing ¢+1 for ¢, this is

S(l_;*z'-'—%)q+l(a_W)dx"dz TTE 4 9)
° q -1 2 2\~%.
{(d——x)g...+(c—z)9+eg}%s+4+l —m) (f h)y de. t+th ! (t+f t—l—h)

and we have similar formule with (instead of (¢—«))...c—2, ¢ in the numerator.

. t_l_}ﬁ)—% ;
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112. If m=1, we have

S' (1—;;..-;;)q“dx...dz R .
{(a—x)2 +(c—-—z)9+eg}%8+q—— I‘(ls-}—g (f b)j‘ {1_t+j2 —irE— }t q”l(t—i—f“’ t_[_]f)-f,

which, differentiated in respect to @, gives the (¢—)formula ; hence conversely, assuming
the a—a, ...c—2, ¢ formulee, we obtain by integration the last preceding formula to a
constant prés, viz. we thereby obtain the multiple integral =C+- right-hand function,
where C is independent of (¢...¢, ¢); and by taking these all infinite, observing that
then /=, the two integrals each vanish, and we obtain C=0.

In particular s=3, ¢g=—1, then

dz dy dz b2 2 P \ \ "
j‘%(w—-w)“(b—y)ﬁr@— 2peefd ngk‘s‘{ | t+ﬂ t+y‘2“mﬁ_7}(t+f°t+9't+h) 2

which, putting therein e=0, gives the potential of an ellipsoid for the cases of an
exterior point and an interior point respectively.

AxNEX V. GREEN's Integration of the Prepotential Equation

2 2
(j—ag o L d)V 0.—Nos. 113 to 128,

113. In the present Annex I in partreproduce GREEN’S process for the integration of
this equation by means of a series of functions analogous to LapLace’s Functions, and
which may be termed  Greenians” (see his Memoir on the Attraction of Ellipsoids,
referred to above); each such function gives rise to a Prepotential Integral.

GREEN shows, by a complicated and difficult piece of general reasoning, that there
exist solutions of the form V=0¢ (see post, No. 116), where ¢ is a function of the s
new variables o, (3. .. ¢ without 4, such that Vo=x¢, z being a function of § only; these
functions ¢ of the variables «, 2...y are in fact the Greenian Functions in question.
The function of the order 0is ¢=1; those of the order 1 are ¢=w«, p=... ¢=y;
those of the order 2 are ¢=ef3, &c., and s-functions each of the form

${AC+BE ... +Cy* 4 D.

The existence of the functions just referred to other than the s-functions involving the
squares of the variables is obvious enough; the difficulty first arises in regard to these
s-functions; and the actual development of them appears to me important by reason of
the light which is thereby thrown upon the general theory. This I accomplish in the
present Annex; and I determine by GREEN’S process the corresponding prepotential
integrals. I do not go into the question of the Greenian Functions of orders superior
to the second.

114. T write for greater clearness (a,b...¢,¢) instead of (@...¢,e) to denote the
series of (s+41) variables; viz. (@, b...c¢) will denote a series of s variables; corre-
sponding to these we have the semiaxes (f, ¢...4), and the new variables («, 8...7);
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these last, with the before-mentioned function 4, are the s-41 new variables of the problem ;
and for convenience there is introduced also a quantity ¢; viz. we have

a:\/j?-i-ﬂ o,
b=~/g"+0 B,
c=~F+8 7,

e=/0 s,
where 1=a*+7*... +9°+¢.

That is, we have § a function of @, &. .. ¢, ¢ determined by

a® b? I e
f2+9+92+9 e +fﬂ+9+~9—=1 ’
and then a, 3...y are given as functions of the same quantities a,0...¢,¢ by the
equations
b? &

2
2. 2 2 .
“=p1p 6—92_*_0'“7—},9_*_3’

also ¢, considered as a function of the same quantities, is

2

=4/1- G

. ¢, ¢ the new variables «, 3. .

115. Introducing instead of @, .. .7, 0, the transformed

differential equation is

eV dv 12
105 2% (s+29—|—2—— e —igs) +VV=0,

where for shortness

# &=V

VY=g { e ~ 5 71}
1 h? azv
+gﬂ+e{ f9+0“ —® +e/+1}¢52

2
+lﬂ+6{ f9+6°‘

f2+9.g 16 dua’ﬁ

1 1 1 A%
+j‘9+6{ 29—2— "<92+a ”+/f~’+e>}“}1?

MDCCCLXXYV,
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Also
116. To integrate the equation for V we assume
V=0g¢,
where @ is a function of 4 only, and ¢ a function of @, 3. ..y (without 4), such that
Ve=xg,

x being a function of 4 only. Assuming that this is possible, the remaining equation to
be satisfied is obviously

RG] ae 1 1 _
#8242 {2g—!—2+0<m...—l—m)}+z®_0.

Solutions of the form in question are

¢=1, =2=0,

_ 1 5 5 8 9

o=u , z_m{ 22—t —h‘2+6}’

¢=Ba = 4 D

- . —a0 1 6
I T R s

1 ] ]
=2 —2— o — ;
Ty { ™ y“’+9}
and it can be shown next that there is a solution of the form

¢=1(A>+BpB%...+Cy*)+D. |
117. In fact, assuming that this satisfies V@ —2g=0, we must have identically

Al P o= e
Pt e Ly R

B J? e e Y
+92+0{_f2+0“ —3 =g Y -}-1}
cf f e _a
_+h9+9{—f“2+9“ e +96 7 +1}
A g 2
B 7 e
+g2J_re{—S_29 1 +f2+o"‘+iﬂ+e}

C

+/ﬂ+e{“3_29_1 }?+e g+a }
oA +BE .4 C) + D )
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so that from the term in «® we have

A _ o1 A Br? _ Cr? —0 -
f9+0{ s=2g—2+ 7 9+0 +h7ﬂ} 52A .8 +07 " f9+0.lﬂ+0—0’

or, what is the same thing,

—9g—8—_f 1 Cf°
R R e SRS PRl

with the like equations from (3...9* and from the constant term we have

1
A
118. Multiplying this last by f°, and adding it to the first, we obtain

1 C _
+BW .. '+§9:—_0_%D—0'

] 6 ] 2T) — () -
A{—zg_z-m—gg_ﬂ.. .—m—%%(fz-i-g)}_% D=0;

viz. putting for shortness Q:é)( o 0—]— 5 +0 .t bgie), this is
A{2¢42+Q+52( f*+0) } +=*D=0,

B{2¢+424+Q+44%(¢* +6)} + 29 D=0,

and similarly

C§2g4-24 Q4 1e(12 +0)} /D=0,

and to these we join the foregoing equation
A B C _
Feitre TE —#D=0.
Eliminating A, B... C, D we have an equation which determines = as a function of 4;
and the equations then determine the ratios of A, B...C, D, so that these quantities
will be given as determinate multiples of an arbitrary quantity M. The equation for
is in fact ‘
2

(fP+0)12¢+2+Q+ Se(f2+0)}

2

+ g
(P +012¢+2+Q + (s +0)}

h? —0 -
+ (h9+6){2q+2+Q+—§—x(ﬁ2+0)}+1—0 ’

and the values of A, B..C, D are then

M2 My? MA2 _M
20+2+Q+3x(f2+0)] 2¢+2+Q+1x(g?+0) "7 2g+ 2+ Q+ (A2 +0)

values which seem to be dependent on 4: if they were so, it would be fatal to the success
of the process; but they are really independent of 6.
119. That they are independent of 4 depends on the theorem that we have

= !,‘{%gj:,z_—kﬂ),uo
2q+2 _a,,‘ °

Ha?2
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where #, is a quantity independent of ¢ determined by the equation

1 1 .
29+2+%xof‘2+2(1+2+%x09‘2" +29+°+ nlﬂ+1 0,

(%, is in fact the value of z on writing /=0), and that, omitting the arbitrary multiplier,
the values of A, B... C, D then are

12 g 12 1
20+2+bn0fT 20+ 2+ beog” T2 A2 T xy

or, what is the same thing, the value of ¢ is

1£22 14267 . 1i2y? 1
29+2+ *of? " 2¢+2+3xyg° 20 +2+3xh° %,

120. [To explain the ground of the assumption
(2q +2+Q)x,
T 204+2—1xs°
observe that, assuming

20+ 2+ Q+5x(f240) _ 2¢+24+Q+1x(g2+9)
2q+2+3% /2 T 204 2+angt

then multiplying out and reducing, we obtain
32(20+24+Q) " —f*) + (2¢+2) - 3 f*— ")+ g —f)0=0;
viz. the equation divides out by the factor ¢°—f?, thereby becoming
220+ 24 Q) —(29+2)z+Lnr 0=

that is, it gives for = the foregoing value: hence clearly, x having this value, we obtain
by symmetry

2042+ Q+12(f?40), 99—]—24—9—}— 34 40), .. 20424 Q4 S (h*+0),

proportional to

29+2+%"V0f2: 2042432y . 20424 gl
viz. the ratios, not only of A: B, but of A:B... :C will be independent of 0.]

121. To complete the transformation, starting with the foregoing value of #, we have

20+2+ QHa(f +0)=(20+2+0) . L g

so that we have

A{294+24 3, f?t F 2, " D=0,

Bi2¢+42+37%4* t +#,9° D=0,

C{20+24 32,12 b+ 2,/2 D=0,
and

A i B C (2¢+2+ Q)% D
N A AN N +/¢ 240 2¢4+2—Lnyf
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Substituting for A, B,... C their values, this last becomes

%D 2¢+2 9 %D 29+2 )
T2q+ 24 Lk} 2+ 24 S S SRHOf T T 20+ 2—Lxf |20+ 2 Sxht M2+

%,D
T 2g9+2—%x0
viz. this is

29+2 0 2¢+2 9 e
{W_Fﬂ} e +{2g+2+%x0h9—/ﬂ+e}+zg+2+g—-0,

{2¢0+24+Q}=0;

or substituting for £ its value, and dividing out by 2¢+2, we have

2t b T2t e g Togr e g T 1=0

the equation for the determination of z,.

122. The equation for #, is of the order s; there are consequently s functions of the
form in question, and each of the terms o? % ...9* can be expressed as a linear func-
tion of these. It thus appears that any quadric function of «, £, ...y can be expressed
as a sum of Greenian functions; viz. the form is

A
-+ Ba 4 &e.
+Coff+4&e.
12,2 11,282 1202
D (o Sy pgp o gt e 1)
+D”( » 2 3 )
(s lines),

viz. the terms multiplied by D', D", &c. respectively are those answering to the roots
%y 2"y . .. of the equation in #,.

The general conclusion is that any rational and integral function of a, £2,. ..y can be
expressed as a sum of Greenian functions.

123. We have next to integrate the equation

426 ae b 6 6
Suppose z=0, a particular solution is @=1;

1 9 0 . C . 210
*=je (—-2(—2—5@19 ce g 0) , a particular solution is BLVARY

NP+ i

in fact, omitting the constant denominator, or writing @=+/ 1?46, and therefore

ae 1 a0 1

W2 s AT T 4 g
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the equation to be verified is

8 9 l 8
Tt V"'2+e‘{ 29+2+fm*m-~+ﬁm}

0 0
+W{—2g——2 ~FFi hQ_H)} 0, which is right.

Again, suppose z:f—gﬁiwﬁ— &c. (value belonging to ¢=«f3, see No. 116), a parti-

cular solution is %fT;mvﬂ ; in fact omitting the constant factor, or writing

O=\/FFin/fTh
a9 (V@40 NP+E
= {Vfﬁifr VW}’

@_;{_ VPEth, 2 NP }
dETEL (PO NAHIVE (P03

and therefore

the equation to be verified is

{ Ag+b 2 /RN
01 IR T (y9+0)%}

+( :;ng?—g‘l‘ 5%){29+2+Jm+@ .. Wie}

P 6
+\/f2+0\/92+0 {f9+5,29 +9+j9+0< 29"‘2—92

1 0 0
+ _]_0( ZQ 2 j~2+0...+k—2—+9)}20;

] ..
or putting for shortness Q"f2+6+g S R o ) this is

0P+ 20 _ONRFE +<«/gT~F@

V246
(f2+0) - NN G 8 (2r0)d + >( 7+2+9Q)

N e RV
% NEH( _op oy b ~/f +9 _9r ' _o\=

which is true. |

And generally the particular solution is deduced from the value of ¢ by writing therein

VIS VT VI
NG e Al NPAG e 402 Vg I

in place of a, {3, ...y respectively : say the value thus obtained is @=H, where H is
what ¢ becomes by the above substitution.

124. Represent for a moment the equation in ® by

a?e de
49'2{65 —|—2 70— I)-I-ii@:(),
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and assume that this is satisfied by @:Hfzdl), then we have

<d69§ adf+2° de +Hd0

+2P (”’H f 2o+ Hz)

\.___/

+ oz, Hyzd() V =0;

and therefore
: dz
(89 o +2PH) 2+ 4 =0
viz., multiplying by %, this is

4 (H2)+ 55 PH2=0,
or

1 d 1
iz g 9+ P=0;

viz. substituting for P its value, this is

1 4 1 0 0 0
"I—TQ}%(H2z)+@(29+2+f@+9+92+9- . +/t9+9> =0.

Hence, integrating,

Co-o- ,
2 e
He= N 0.0 o0 C an arbitrary constant,

and
©=CH b ds arbit
= XI{Q VfQ_i_o.gQ_’_o”.hQ_i_o, X I lrary,

where the constants of integration are C,2; or, what is the same thing, taking T the
same function of # that H is of 4 (viz. T is what ¢ becomes on writing therein

NP+t VP+i Nt
NP B N R N

in place of «, (3, ...y respectively), then

CH X $-11dt
- ﬁTQ Nf2+t. g2+t 2+ E
‘where y, may be taken =co: we thus have

V=0¢=—-CH J’w T
=00=— ¢ o 2Nt . Pt P+
Recollecting that

b2 e2
1=f2+3+.9'2+3 +lﬂ+6

so that for d=oo we have @*+4-8. .. +¢*+¢*=/, the assumption y=oo comes to making
V vanish for infinite values of (@, 5,. .. ¢, ¢).



764 PROFESSOR CAYLEY ON PREPOTENTIALS.,

125. We have to find the value of ¢ corresponding to the foregoing value of V; viz.
W being the value of V, on writing therein (2,7,...2) in place of (@, 9, ...¢), then
(theorem A)

— T(3s+9q) a1 2 aw
8= T oM (g +1) de ),

Take A the same function of (,7,...2,¢) that 4 is of (a,'b,. .. G, €), Viz. A the positive
root of

22 yQ 2
Frcti T =

and (%, 9,...%,7) corresponding to (@, 3,...7,5), viz.

b T Y ;__L: 7___\/’1_ » oy I
RSN = NGPE+A7 NN T JEEAT @2AATT RN
so that W is the same function of (%,7,...2) that V is of (o, 3,...6): say this is

_ CA\pyw i~ vt
- N R N R oy

then we have for ¢ the value

__;11(‘%’3'}"]) 1g20+2 S8 g2\~ 1 aw 1 dW
e= o)+ M T (1‘72“ : hQ+A) (j A S aE +/ﬂ+A5 a’é‘ )

where ¢ is to be put =0.

126. Suppose ¢ is =0, then if 2 +y -I-%Z—> 1, A is not =0, but is the positive root

jQ

—«/1 F L Eis=0, ad we have
= ~F e T Ren 8=0, and we have

¥ @
f2+)\+g +}\ "+]l2+)\'_1"r7

¢=0, viz. ¢ is =0 for all points outside the ellipsoid ;;4- :Z—z . .+%§:L

-2 N 2
But if }cg +J Z <1, then on writing ¢=0, we have 2=0, "’2:%’
— F( 38+4) 16012 A @ [ZW
€= 255 (¢ +1) - AT 2 J‘QE dk +9 + +h é d)\ A=0
Cs+a) g (LgdW 1 dW AW _gdW
=smrgin O (8w e et

where term in () is

0)\411

Ay -

7 1
2 9 Chaaretd
C 8oy

_— OAOII/O .
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Hence

— TGs+g)  2CY, <82>
ST oI (g 1) Ay fge
=_—Tlsta) 200 (2 g 2
2ai T (g +1) " Dofy...h VR

where {,, A, are what ¥, A become on writing therein A=0. It will be remembered
that A is what H becomes on changing therein 4 into a; hence A, is What H becomes
on writing therein 4=0.

Moreover ¥ is what ¢ becomes on changing therein «, 3. ..y into &, 7...¢: writing

»

2=0, we have £= a n—y o= = ; hence ¥, is what ¢ becomes on changing therein
@, 3...y into ]“—f, % .. Z And it is proper in ¢ to restore the original variables by
b

e a
writing VR VAT \//ﬁm -in place of @, B... 7.
127. Recapitulating,
de...dz

4 )
V= e

where, since for the value of V about to be mentioned ¢ vanishes for points outside the
ellipsoid, the integral is to be taken over the ellipsoid
2? 22
R
and then (transferring a constant factor) if
_THT() [
T T@s+g) Af--h) . He 2 NI+ f 2t

the corresponding value of ¢ is

. _wQ _ZQ q
e=h(1-5%...—%)"

where A, is what H becomes on writing therein d=0, and 1, is what ) becomes on writing

Z...%in place of ...

f h
128. Thus putting for shortness Q=¢-¢"}(¢-4-f2...¢+%*), we have in the three

several cases p=1, ¢p= V- f“'+ Sy 9= VT ab N respectively,

H=1, = (1=%..—5) v=ET0 0 7 h)j' o4,
H:%E;h o=z ( 2 » BV= .« 07{; Qi
T U R

MDCCCLXXYV. o1
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and for the case last considered

Lfgag 3 R2c?
@ _ 2f2+0 + 2&2_}_0 _l
T2g+ 2+ b 2T 202 F P xy

H= 5202+ 6—)—- R R A2 L»e) --—l, T same function with ¢ for ¢,

OQ’-.L'2+ %o (;Q )

'*Y a? o2 1

YT 2 b 2T I

1 f4 + 1]2'4 l—
0= 20+2+3nof2 7" 2¢F 2+ Lugh®  xy

e . i n ; 1 1 —
where #, is the root of the equation T '+2q+2+-§x0k2+1_0’
2 L .
¢= (1 —f ) g, V=00 ”9 (- A, H<p§ T o 1)

Axxex VI. Ezxamples of Theorem C.—Nos. 129 to 132.

129. First example relating to the (s+1) coordinal sphere #*... +2°fw*=f".
Assume

M
(@®... 4+ )™

V= V= J%N_iw (a constant),
these values each satisfy the potential equation.

V' is not infinite for any point outside the surfaces, and for indefinitely large distances
it is of the proper form.

V" is not infinite for any point inside the surface; and at the surface V'i=V",

The conditions of the theorem are therefore satisfied; and writing

= odS
V_.g‘{ (@—a?) ...+ (c—2)%+ (e—w)? }_53— 1y

we have
(s —1) <de dW")

§= T4y o T )
where
. M M dW"
‘N,::(.%’Q...-I-ZQ—FZUQ)%S—%’ VV”:fv&__l; hence 'W—::O,
aw'’ 2 d zd wd M
7:(}5 de """ +f t/z+f dw)( 2 puR)e
(s~1)%(xa 2wt M

(2%... +29+w%2)é8+;-
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which at the surface is :is;s_l&d.
Hence
(s—UC(s—3) .M _T(bs+3).M
[ (l“l)s+lfs y - 2(11%)3“]03

130. Writing for convenience M= §[~( 2_%1{‘ 3 (3 a constant which may be put =1),

(viz. ¢ is constant).

also 2. ..4c*4e*=#% we have g:Bf, and consequently

afds
j‘{ (a—a)? —2)*+ (e—w)Q}%s—%

1 s+1f.98f

= F(g‘s+ 1

(Pl)s+1fsaf 1
CTs+3) S

By making . .. ¢, ¢ all indefinitely large we find
92 (I‘l )s+lj's 3/‘
j‘deSW —LS+ 1) °
viz. the expression on the right-hand side is here the mass of the shell thickness of.

Taking s=3 we have the ordinary formule for the Potential of a uniform spherical

shell.
131. Suppose s=3, but let the surface be the infinite cylinder #*4-y*=f*. Take here

V'=Mlogs/ ¢+, V'=Mlogf,

pe . . AV . C e .
cach satisfying the potential equation 53+ 55=0; but V', instead of vanishing, is

infinite at infinity, and the conditions of the theorem are not satisfied ; the Potential of
the cylinder is in fact infinite. But the failure is a mere consequence of the special
value of s, viz. this is such that s—2, instead of being positive, is =0. Reverting
to the general case of (s-1)dimensional space, let the surface be the infinite cylinder
2*... +2'=f"; and assume

V! = M V"——— (a constant),

( +CQ)3(S ~2)s fs 2

these satisfy the potential equation; viz. as regards V', we have
d? a2 a2 . d2 a2
(LW .. +dc§+d_e@> V'=0, that is (W . -I-C'Z—C—Q)V’:

V' is not infinite at any point outside the cylinder, and it vanishes at infinity, except
indeed when only the coordinate ¢ is infinite, and its form at infinity is not
=M-+(a... +c4¢) "
V" is not infinite for any point within the cylinder ; and at the surface we have V'=V".
O H2
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We have
T(is—1) (W' dW"
0= " (g <TJJ+‘JJ)’
where
1
IW ——(s-—-Q)—);.(zQ. S+ M —(s—2)M W
Kz @t o= pmr ot the surface; —7=0,
and therefore
—DI(Ls—M
g:—ﬁ;,f— (viz. ¢ is constant);
. . 4(TY)s+1 fr=18f
or, what is the same thing, writing M= (s— 9T (= 1) whence ¢=0f, and writing also

. Fc*==x% we have

j‘ o dS
{(a—-x)ﬁ v F(c—2)%+ (e—w)Q}-%S_%
4(P1)3+1fs—1 3/'

- (3“9)P<23"‘“) K2

L)s+1£s I*O‘
zz%.;_f; 7 81 ; for interior point z< f

132. This is right; but we can without difficulty bring it to coincide with the result
obtained for the (s+1)dimensional sphere with only s—1 in place of s; we may in
fact, by a single integration, pass from the cylinder 2?... +2*=f* to the s-dimensional
sphere or circle 2° ... 42*?, which is the base of this cylinder. Writing first dS=d>dw,
where dZ refers to the s variables (#...z) and the sphere 2*... +2°=f"; or using now
d5 in this sense, then in place of the original dS we have dSdw: and the limits of w
being w0, —oo, then in place of ¢—w we may write simply w. This being so, and
putting for shortness (¢a—x)*. .. 4+ (¢—z)*=A? the integral is

[ e

and we have without difficulty
( o de 1 TiN(—2)
L R TE P
[To prove it write w==A tan §, then the integral is in the first place converted into

L
.2

’AT—?’j‘z cos*~*d0, which, putting cos §=+/x and therefore sin 6=+/1—z, becomes
0

1 o, 3

which has the value in question.]
Hence replacing A by its value we have

TiT4(s—2 )§ 9FdS RT3 fo1 9 1 1
THe=1) J{@—ap. 1=z} ““(s—q)f‘%s—l){(ag .+cﬂﬁ<*-2>°1fﬁ} ’
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¥ dS dmls fo1 3f ! 1
= or 75
{ (@a—2)?... + (c—-z)Q}%(8_2)_(8—2)1%(8—2) (@2... +CQ)%(8—2) 2

ey 1 1,
frd I%s (... +c@)§~(s—z) OIJT_—g ;

viz. this i the formula for the sphere with s—1 instead of s.

that is

Axxex VII. Ezample of Theorem D.—Nos. 133 & 134.

133. The example relates to the (s41)dimensional sphere a°... 42°+w*=f>
Instead of at once assuming for V a form satisfying the proper conditions as to conti-
nuity, we assume a form with indeterminate coefficients, and make it satisfy the con-
ditions in question. Write

= +l\c/£+e9)5“% fora’... +c*4-e> 17
=A(@... ++)+B for ... +*+e<f?:

In order that the two values may be equal at the surface, we must have

M 2
f—s——FAf +B,

. . . av
and in order that the derived functions - &c. may be equal, we must have
=DM _9ag, &e.;

viz. these are all satisfied if only —_(Sf‘;llezz A
We have thus the values of A and B, or the exterior potential being as above
— M
= (aQ. .o + CQ_l_eQ);Ts_E,

the value of the interior potential must be

M 2.0+
=An] s tD— (o) ST,

The corresponding values of W are of course
M M 2w
2 (lg 1) (Lo e
(22... +Za+wa)%s—% and fs—1{<23+ 2) (23 ) }9

and we thence find
e=0 if a?... +24w* > 1%

i Ids+3) M
5=—~(Fs); - 4(28—9)(23+1)§ja+v *'(Pf a+1)fé+I

if a®... 22w <f>
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Ty

Assuming for M the value ; (e a) S+, the last value becomes ¢=1; and writing for
2

shortness @. .. +c*4-€==% we have

V—-§ (=)t (C_{Z e (e—w) over (s-+1)dimensional sphere a?...4-2*+w’=f>,

(1"1 s+1 fb+l : .
_I‘(~s+ ) i , for exterior point z > f,

— 0 S._+ 5 (5843 —(4s—%)=*}, for interior point z <f.

2 22 '
134. The case of the ellipsoid ;z% . +7:=1 for s41-dimensional space may be

worked out by the theorem; this is in fact what is done in tridimensional space by
LeseuNe-DiricHLET in his Memoir of 1846 above referred to.

Axxex VIIL. Prepotentials of the Ilomaloids.—Nos. 135 to 187.

135. We have in tridimensional space the series of figures—the plane, the line, the
point ; and there is in like manner in (s-41)dimensional space a corresponding series
of (s+1) terms; the (s41)coordinal plane—the line, the point: say these are the
homaloids or homaloidal figures. And (taking the density as uniform, or, what is the
same thing, =1) we may consider the prepotentials of these several figures in regard to
an attracted point, which, for greater simplicity, is taken not to be on the figure.

186. The integral may be written

j‘ dw...dt
V= (@—a)%..+(c—2)?+ (d—w)2..+ (e-—t)9+a9}%s+q’

which still relates to a (s-41)dimensional space: the (s--1) coordinates of the attracted
point instead of being (@...¢, ¢) are (¢...¢, d...¢,u); viz. we have the ¢ coordinates
(@...c), the s—¢ coordinates(d. .. ¢), and the (s--1)th coordinate «: and the integration
is extended over the (s—s)dimensional figure w=-—w to +w,...f==—cw to +cw.
And it is also assumed that ¢ is positive.

‘It is at once clear that we may reduce the integral to

V___j‘ dw dt
T @—2)2 + (c—2) 2 Fut 4w+ t@}%ﬁq’

—§ dw ... dt
TJ (ARt )BT

where A%, =(a—a&)*...4(c—2)*-+’, is a constant as regards the integration, and where
the limits in regard to each of the s—-s' variables are — o0, 4.
We may for these variables write 7£...7%, where £...4§°=1; and we then have

say for shortness
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oA t=r dw. .. di=r""'dr dS, where dS is the element of surface of the (s—¢')-
coordinal unit-sphere £°...4+¢*=1. We thus obtain

$=8'=1p
V= f{ Q}Mj"ds,

where the integral in regard to  is taken from 0 to oo, and the integralSdS over the
surface of the unit-sphere; hence by Annex I. the value of this last factor is = @(‘l)—sﬁ)
The integral represented by the first factor will be finite, provided only £s'-+¢ be positive;
which is the case for any value whatever of ' if only ¢ be positive.

The first factor is an integral such as is considered in Annex II.; to find its value we
have only to write r=A s/, and we thus find it to be

1 1 Cak viz. 1 305 (s—sT'($s' +¢)
-(Ag)és’-ft] 2 o (1+ st+qo —As"l—zq~ F(%S—I-q) 4

and we thus have
1 TYH—T3Es+9)

V=17 T +)

b

_ Ty Tl +9) 1 .
Csta)  {(e—a)%t (e—2)>+ o[

137. As a verification observe that the prepotential equation OV =0, that is

s az | az d* | d* | 2q+1 d .
(7"'+¢—CQ+W"‘ RN R du>"“0’

dao %

for a function V which contains only the §'-+1 variables (¢.. . ¢, u) becomes
! Y

(G- ot ot v =0,
du

da?’ du? U

_I_

dc?

which is satisfied by V a constant multiple of {(a—&)*. . 4+ (c—2)" +u* {2

ANNEX IX. The Gauvss-Jacont Theory of Epispheric Integrals—No. 138,
138. The formula obtained (Annex IV. No. 110) is proved only for positive values

of m; but writing therein ¢=0, m=—1, it becomes
de...dz
v —;-2 ' 38
S\/l—-@...—/l—g{(a—-x)?...+(0—z)2+62}j

_(1{‘11 ky dt .t (1—-t+ﬁ : t—]—/» t) (2 R,

a formula which is obtainable as a particular case of a more general one

§ - i N dt !
CICRE ~ ) v — Diset.{ (£ X, Z, W, T)2 - £(X2.. + 22+ W2 12)
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(notation to be presently explained), being a result obtained by JacoBr by a process
which is in fact the extension to any number of variables of that made use of by
(Gauss in his Memoir ¢Determinatio attractionis quam . . ... exerceret planeta, &c.’
(1818). I proceed to develop this theory.

139. Jacosr's process has reference to a class of s-tuple integrals (including some of
those here previously considered) which may be termed “epispheric ”: viz. considering
the (s41) variables («...2, w) connected by the equation & .. 424 w*=1, or say they are
the coordinates of a point on a (s+1)tuple unit-sphere, then the form is { UdS, where
dS is the element of the surface of the unit-sphere, and U is any function of the s41
s

2w, 1)2}5

coordinates ; the integral is taken to be of the form § N and we then

obtain the general result above referred to.
Before going further it is convenient to remark that taking as independent variables the

s coordinates ...z, we have CZS:_TZT“ where w stands for —l_—\/ 1—a%.. —2%; we must
U N

in obtaining the integral take account of the two values of w, and finally extend the
integral to the values of . ..z which satisfy &®. ..4-2°<1.

If, as is ultimately done, in place of a'...2z we write ; e % respectively, then the
2 2
value of dS is = fl—lz d w dz, where w now stands for i—\/ 1 —;%...—%Q; we must in

finding the value of the integral take account of the two values of w, and finally extend
the integral to the values of @ ...z which satisfy;—i e —I—%;< 1L

140. The determination of the integral depends upon formule for the transformation
of the spherical element dS, and of the quadric function (9. ..2,w, 1)%

First, as regards the spherical element dS; let the s41 variables @, ...z, w which
satisfy a®+419°... 4+ 2°4+w’=1 be regarded as functions of the s independent variables
0,,...¥; then we have

8 W)

dS=| &, y ...z w |dide...dy, =a%g...¢ %)
de dy dz  dw

@ dh T de’ db

d 4y A d
g’ de """ dp’  dp

didg. .. dJ, for shortness.

ay  dy Ay dy

Suppose we effect on the s+1 variables (2,7 .. .2, w) a transformation

XY Z W

x’y-otz’,LU:T,T,OIQT"‘T,
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thus introducing for the moment s42 variables X, Y,...Z, W, T, which satisfy iden-
tically X*4Y?. .. 472>+ W?*—T°=0, then considering these as functions of the fore-

going s independent variables 8, @, . .. J, we have

1 ; r __LB(X,Y...Z,W) .
dS:,I,m X, Y...Z, W d@d@dlp—l\ i a(@)¢‘¢’—“’*) d@d@...d’l’

dX dY  d7 AW
8 db T dy T dd
dX dY  dZ dW
dg’ dp”" dp’ dp

X Y d% AW
A’ ay dy dy

141. Considering next the s-2 variables X, Y,...%, W, T as linear functions (with
constant terms) of the s-1 new variables &,7...&, », or say as linear functions of the
s—+2 quantities & 7. .. §,, 1, which implies between them a linear relation

aX+0Y ... +cZ4dW +el=1;

and assuming that we have identically
X4 Y2 . 4P W-T =87 . 1,

so that in consequence of the left-hand side being =0, the right-hand side is also =0;
viz. & 4. ..&,» are connected by

g4 ..+ +eP=1:

let d3 represent the spherical element belonging to the coordinates &,7,...%,». Con-
sidering these as functions of the foregoing s independent variables §, ¢, . . . {, we have
, _0 ... @),
ds=| & 2 ... & o |db d@...dxp.__aw,?m%*)‘dﬂdcp odd.
dg  dy ¢ dw
g’ db T dw’ ol
& 4 de
dp’ dp 77 dp’ dp

d‘; dy g dw
W ody A

142. We have in this expression &, 7...{, », each of them a linear function of the
542 quantities X, Y,...Z, W, T; the determinant is consequently a linear function of
s+2 like determinants obtained by substituting for the variables any s+1 out of the s-2
variables X, Y...Z, W, T; but in virtue of the equation X*4+Y*. .. +Z*4+W>—"T12=0,

MDCCCLXXY. 91
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these s+2 determinants are proportional to the quantities X, Y ...Z, W, T respec-
tively, and the determinant thus assumes the form

aX+0Y ... +cZ+dW+eT
T

A,

where A is the like determinant with (X, Y,...Z, W), and where the coefficients
@, b,...c,d,e are precisely those of the linear relation aX4-0Y ...+ cZ+dW+elT=1;

. .. 1 . . .
the last-mentioned expression is thus = A, or, substituting for A its value, we have

19(X,Y... %, W) .
CZE«-I "( <P*L'F5—d6d¢"d¢’

viz. comparing with the foregoing expression for S we have

which is the requisite formula for the transformation of d8S.
143. Consider the integral

ds
{0l y .z w, )20
which, from its containing a single quadric function, may be called “ one-quadric.” Then
effecting the foregoing transformation,

XY ZWwW
By Y o B WS 7+ 1o
and observing that
1
(gt u, 1P=g (XX, Y ... 2, W, T),

the integral becomes
_ f dz
T EIX Y.L L7, W, TR

where X, Y ...Z, W, T denote given linear functions (with constant terms) of the s41
variables &, ... &, », or, what is the same thing, given linear functions of the s+2 quan-
tities & 4... &, », 1, such that identically X*+Y*... + 224+ W —T*=8+»"... + 8+ o*—1.
We have then 247 ... +8+o*—1=0, and d% as the corresponding spherical
element.

144. We may have X, Y ...Z, W, T such linear functions of &,4... &,®, 1 that not
only

KELY2 L SR W=+ O e’ —

as above, but also

(XX, Y, .. 2, W, TP =AL+ B . . OO EW—1;
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and this being so, the integral becomes

ds
j‘{ A2+ By?.. . +CEHEWE_L}™

where the s+-2 coefficients A, B...C, E,L are given by means of the identity
—(6+A)I+B). .. 0+ O+ E)+T)
=Disct. {(*YX, Y ... Z, W, TP+ 4X>+Y?. .. + 22+ W>—=T1%)};

viz. equating the discriminant to zero, we have an equation in ¢, the roots whereof are
—A,—-B...—C,—E, —L.
The integral is
az
ﬁ (A—L)2+(B-L)r... +(C—L)+(E—L)o* |’

which 1s of the form

ds
j‘{ A+ by . 4o+ ca?
where I provisionally assume that a, 5. .. ¢, ¢ are all positive. )
145. To transform this, in place of the s+1 variables & #...¢,» connected by
E47... +8++=1, we introduce the s+ 1 variables #,7. ..z, w such that
r=5 Va ! Vb e M,
¢

o YT e U=

where
e=al+0n’... 4+c5+ew’,
and consequently
24y, . 2 +w=1.
Hence writing dS to denote the spherical element corresponding to the point
(9 ...2, w), we have by a former formula

__1 d(ENVa, 1 Vb ENe wNe) 4
dS= S A0de ... dy

or, what is the same thing,

dz, 1
{ag2+0n2. .. +c4ea? TV (ab. . ce)t

ds.

Hence integrating each side, and observing that {dS, taken over the whole spherical
surface 2+, .. +2°+w'=1, is =2(T})*" +T'($s+%), we have

j’ ds . 2(F1)s+1 1
1B+ O e FOTV T D (s +3) T (b ce)¥
512
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146. For a,b...c,e write herein a+4, b+0...c+0, e+ 0 respectively, and multi-
plying each side by ¢77!, where ¢ is any positive integer or fractional number less than
+8, integrate from =0 to §=oo. On the left-hand side, attending to the relation
E4n. .. +8++'=1, the integral in regard to § is

g"” 61-19
Jo {gg_‘_o}%(si-l)’
where ¢, =a&4-b7. .. +c4*+es?, as before is independent of §; the value of the

definite integral is

_TEE+D—)T(g) 1
Ti(s+1) gm0

which, replacing ¢ by its value and multiplying by d=, and prefixing the integral sign,
gives the left-hand side ; hence forming the equation and dividing by a numerical factor,
we have '

= 2(L'g) ! b — : -1
y(a?... +ct2+ewg)%‘”‘)"qzl“ql%(w1)-9& db. £t ta. . tto.t+e)7,
and in particular if ¢= —4, then

j‘ s Ty
(8. +e+eu?) s

or, if for @ . .. ¢, ¢ we restore the values A—L...C—=L, E—1L, then

dz _2(Tyy
(A£2...+C¢+Eur—L)*" I'gs

2(TLY 1
=_(F£S>.. jiLth. (t+A ... t+C . t+E . t4+1);

j dt 4 t+a. . t4c.tte)

j‘ dt. t(t+A =L ... t4+C—T, . ¢+ E—L),

viz. we thus have
5’ dasS 2y (7
1632 cezyw, 1 PET Tas J g
where {+A ...t4+C.¢+E.¢4+Lis in fact a given rational and integral function of 7;
viz. it is

dtt+A ... t+C.t+E . t+L),

= —Disct. {(*YX...Z, W, TP4#(X> .. + 724+ W2=T?)}.
147. Consider in particular the integral

das )
y{ (a—=fo)... +(c—he)*+(e—hw)2+ 2}
here
(XX .o 7y W, TPH(XC . . 470 W T?)

=(@T—fX)y... +(I'—hZ)+ (T —EW 4T
+4X2. ..+ 72+ W2-T?)
=(f*4+O)X2. .. +(BP+)Z2+(B+ )W+ (a?. . . +4-+P—2)T"
—2af XT ... 200 ZT—2e¢kWT ;
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viz. the discriminant taken negatively is

Y A , —aof

t4-h2, —ch
—af ... —ch —(a...++e+0)42
which is
, 27,2 242
=t LR R (t—~a2. .. l?—}-tJrf;2 +;Jp+f_q§),

y e 2 o2 2
=t.(t+f. . 02 R < BT CARRR A N ?)
=t+A...t+C.t+E. t+1,

and consequently — A ... —C, —E, —L are the roots of the equation

a? 2 &2 2
1—@ cee —W—ﬁ_ﬁ——t—:o.
148. The roots are all real ; moreover there is one and only one positive root. Hence
taking —L to be the positive root, we have A ... C, E, —L all positive; and therefore
a fortiori A—1L, ... C—L, E—L all positive, which agrees with a foregoing provisional
assumption. Or, writing for greater convenience § to denote the positive quantity —L,

that is taking 0 to be the positive root of the equation

a? c? &2 2
1

ik TR ET T
we have
j’ ds
{a—fa)2. . +(c—he)?+ (e—kw)2+12}¥
2T 7 1
O - ;
T'ts J, ] Bop e pe 2 &2 2
i.t+f2.-.t+ .t+ (lﬂi:l‘fé‘-..—'m—m—‘{)

or, what is the same thing, we have

de...dz

1 —
Soe ﬁyiw{(a;x)g. (=22 + (e Fhw)2+2}F

T'is a? ? & 1?2\ % . .
0(i‘i> at (1 T —zse/ze"mé“f) (- tHf2 .t R R,
where on the left-hand side w now denotes \/ LI—... —Z—Q, and the limiting ejua-

tion is f + a=1
149. Suppose (=0, then if

2 e
}5. ‘e +]l§—|-l;§>1,
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the equation
1 a? CQ

T TR T e+/c2-'0

has a positive root differing from zero, which may be represented by the same letter 6 ;
but if
a? 2 e
IR Trte< 1,
then the positive root of the original equation becomes =0; viz. as gradually dimi-
nishes to zero the positive root ¢ also diminishes, and becomes ultimately zero.
Hence writing /=0, we have

ds
{(a—fm)ﬁ, e +(C—-ilz)9+(e—]{w>2}§sa

or, what is the same thing,

1 dz...dz
feooih j":{_—_—w{({l—.l‘)g. oA (e=2)2 4+ (e Fhw)2}>

O(I‘% ag CQ eQ —'21—/' 2 -1
= F%'g)j‘ dt <]-—th1‘2- . _—t—l‘hg_l-{—kQ) (t. t+f2_ . t_l_k . t_‘__k?) 5

0 now denoting the positive root of the equation

a? c? e’
i TR TR
or else denoting 0, according as

1

—0,

a® ¢t e :
f'rg. .. +EQ‘+Z§>1 or <1.
2 2
In the case 2. . . e—<1, the inferior limit being then 0, this is in fact JacoBr’s
/2 k2 g
theorem (Crelle, t. xii. p. 69, 1834); but Jacost does not consider the general case where
{ is not =0, nor does he give explicitly the formula in the other case
= a fQ + 72 + 72 > 1.

150. Suppose k=0, ¢ being in the first instance not =0, then the former alternative
holds good; and observing, in regard to the form which contains +=w in the denomi-
nator, that we can now take account of the two values by simply multiplying by 2, we
have

a3 2 do...dz
ﬁ{ (@—fo)2.. A (c—he2+e ™ T fo i wi(a—a).. .+ (c—z)2+e2 3
TR T2
(w on the right-hand side denoting /\/ 1 -—;—Q ces —-%5, and the limiting equation being

fz —|- }Q =1), each
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a? c? é2

=" |, (=i e T) ),

2
G
formula referred to at the beginning of the present Annex. We may in the formula
write ¢=0, thus obtaining the theorem under two different forms for the cases

2 2
where §is here the positive root of the equation 1— ﬂ‘iffﬁ cee —%: 0, which is the

a2

2
e + ]%> 1 and <1 respectively.

ANNEX X. Methods of LEJEUNE-DIRICHLET and BoorLE.—Nos. 151 to 162.

151. The notion that the density ¢ is a discontinuous function vanishing for points
outside the attracting mass has been made use of in a different manner by LejEUNE-
Diricurer (1839) and Boows (1857) : viz. supposing that ¢ has a given value f(z...z)
within a given closed surface S and is =0 outside the surface, these geometers in the
expression of a potential or prepotential integral replace ¢ by a definite integral which
possesses the discontinuity in question, viz. it is =f(« . ..2) for points inside the surface
and =0 for points outside the surface ; and then in the potential or prepotential integral
they extend the integration over the whole of infinite space, thus getting rid of the
equation of the surface as a limiting equation for the multiple integral.

152. LeJEuNE-DIRICHLET’S paper ¢ Sur une nouvelle méthode pour la détermination
des intégrales multiples ” is published in ¢ Comptes Rendus,” t. viil. pp. 165-160 (1839),
and Liouv. t. iv. pp. 164-168 (same year). The process is applied to the form

I dz dy dz
p—1 dao {(Q—w)2+(b——y)g+ (c_z)fz}%m—x)

2 2 2
over the ellipsoid %—l—%;—l— %:1; but it would be equally applicable to the triple inte-
gral itself, or say to the s-tuple integral

f dr...dz.
{(a=a)?... 4 (c—z)2}*0
or, indeed, to

de...dz
y‘: (a—a)?... +(c—2)2 42}

22
2

2
over the ellipsoid yae —l—%:l; but it may be as well to attend to the first form, as

more resembling that considered by the author.

. 24~ si . . .
163, Since ;§ S—lgf cos ap d¢ is =1 or 0, according as A is <1 or >1, it follows that
0

the integral is equal to the real part of the following expression,

2 ® sin¢’?i(”f-z...+z—z) de ... dz
Wﬁ “® ¢ ¢ ' {(a——w)ﬂ,.__{_(c_ 5)9}%”‘1’
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where the integrations in regard to «. ..z are now to be extended from —ow to 4oo for
each variable, A further transformation is necessary: since

LR ; " .
:ﬁe‘”’”j; dy .Yt e, ¢ positive and 7 positive and <1,

writing herein (a—a). ..+ (¢—=2) for o, and %s-+}¢ for r, we have

1 1 154 q)mi i s+g—1 Ligd (a=2)2. ., +(c—r)?
Ta—a). ..+ (c—2)2}" 1~ T +g) ¢ (2+@5‘OCM'¢HN6% e,

and the value is thus
2 o i ® sin ¢ ® 1 - z(f .o .+f)¢ _ i a—2)2 —)2
_— Gs+9) oo r Fs+q--1 7 72 \II{( 2ot (c—z) } .
s tq) ° 2j; de o 50 ARV fe e de...dz,
where the integral in regard to the variables (x...2)is

__eup(nz . +cz)5 d'l (t[z+—— 12+2a\p1} . §1dZ (;{ (\p—l—%)zz_‘zcl]/z} .

2

and here the a-integral is
— o _aMA
j‘ﬂ{;:goe 7 \pqu

and the like for the other integrals up to the z-integral. The resulting value is thus

= 2 —gqmi Slnqj Is4g—1 \PW 3 ——CZT 'K%sf
— F(28+q)6 3q §' § dy. -4/ 7 (qs+f¢ TEvy TS ey (p+;l24,

which, putting therein :%, dy=—1 dt, is

]))e 2qm‘§‘ dt_)\?fT{_q—ha_ﬁg‘ i¢(f—(21+—t...+hzc;.t) Sin@ . ¢q_1 d(p.

27‘.28 1

TTs+g) (7

154. But we have to consider only the real part of this expression; viz. writing for
2 2

a c .
shortness 6= e 25 p We require the real part of
e‘%‘l’”§ ¢® . @7 sin ¢ do.
0
Wiiting here for sin ¢ its exponential value,; (¢ —¢™?), and using the formula

11 4T o s "
E:I-,&e g ﬁ dp. @' . ¢ (o positive),

and the like one
(—uiaji:flé e f dp.¢" ' ¢“® (o negative)

(in which formulee ¢ must be positive and less than 1), we see that the real part i

question is =0, or is
_Lgsin (g+lYr _ = 1
2(1—a)t > 2I'l—g) 1—0)?

according as ¢>1 or e < 1.
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2
166. If the point is interior,}l—z e +Z—Q< 1, and consequently also <1, and the value,

writing (I'})? instead of =, is
(Fl) / N —g—1 2 52 -5 1 _ag__. __Ci_ -
=it gra=g -0 ) @ (St )z(_‘_fut...—,ﬂﬂ :

2 2
But if the point be exterior, j% cee +%§> 1, and hence, writing 4 for the positive root

2

of the equation, =1 ; viz. 0 is the positive root of the equation f’2a+ e +,_1 then

t=0, ¢ is greater than 1, and continues so as # increases, until, for #=4, ¢ becomes =1,
and for larger values of ¢ we have s<1; and the expression thus is

— —g~1 2\ -4 — A \—q.
T —a h)f db 61 (G f 5 L) ( )

viz. the two expressions in the cases of an interior point and an exterior point respec-
tively give the value of the integral

j'{ (a—a) +(c — )2}t

This is in fact the formula of Annex IV. No. 110, writing therein ¢=0 and m=—g¢.

156. BooLr’s researches are contained in two memoirs dated 1846, «“On the Analysis
of Discontinuous Functions,” Trans. Royal Irish Academy, vol. xxi. (1848), pp. 124-139,
and “On a certain Multiple Definite Integral,” do. pp. 140-150 (the particular theorem
about to be referred to is stated in the postscript of this memoir), and in the memoir
“On the Comparison of Transcendents, with certain applications to the theory of
Definite Integrals,” Phil. Trans. vol. 147, for 1857, pp. 745-803, the theorem being the
third example, p. 794. The method is similar to that of, and was in fact suggested by,
LeseuNe-DiricHLET ; the auxiliary theorem made use of in the memoir of 1857 for the
representation of the discontinuity being

@;—;}I‘_ijw ymjwda dv ds cos{(a—a—ts)v+Yir }vis™ f{a),

which is a deduction from FouriEr’s theorem.
Changing the notation (and in particular writing s and $s+¢ for his # and ¢) the
method is here applied to the determination of the s-tuple integral

2 2
(p(%Jr%Q
{(a-x)g...+(c——z)9+eg}%s+q
(where ¢ is an arbitrary function) over the ellipsoid % 7 +ZZ_1

V=\dz...dz

157. The process is as follows: we have

'Z.Q z?
<.]T2“ +hz) d d d s+qt st+g—~1
{(@—2)t =22+ [T "F~S+f1>.§§5 wavary

cos {(u_f_ﬂ ~7L§—~r((a—a¢)2... —|—(c-—-z)2+e2)1)) +%(%s+g)w}><pu ;

MDCCCLXXY. 5K
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viz. the right-hand side is here equal to the left-hand side or is =0, according as

fz + “<lor>1. Vis consequently obtained by multiplying the right-hand side by
dv ... dz and integrating from —oo to 4o for each variable.
Hence, changing the order of the integration,

1 1 w w ) )
———— du dv de v 175 g, Q)
wr(gwq)iﬁ j; P 3,

where
Q=(dz...dz cos {(u—e%—%z...—Z_Z+q-{(w—w)2...+(c—z)2})v+% —%s—l—g)vr}.
Now
22 9 o 1 7&7‘ 2y
et rla—ay=HT g4 T Cele—ap= T g T
if
fra S
=2 EEEYE o=2 1+

158. Substituting, and integrating with respect to £. .. ¢ between the limits — o , 40,

we have
o (f... By o r
Q_'(1 L Rk O u_827_1+f27' Ty vt97

or, what is the same thing, writing ]? in place of =, this is

o (fe Ryl d a? _i__.ef) 1.
Q_(fl+t...lﬁ+t)%v%scos v VR A TN vFagm s

that is, writing

. aQ 2 2
S TEa T
we have
w81 (f .. h 1~ p7cos{(u—o)v+3 qw}qou
V=gt Ts+q) ) § jv du dv dt EAERREY R
or, writing ##~'= (F )%, this is
(I; §dt A N 2 Y I §§ du dv . v'cos{(u—o)v+Sq7tou

169. BooLr writes
—1~§1§‘ du dv d* cos{ (w— o) v+5q7 | Qu= (—%) ng(a) ;
TJo oo T
viz. starting from FoURIER’S theorem,
}rﬁlg‘;w du dv cos(u—o)v . Qu=¢(0)

(where ¢(c) is regarded as vanishing except when ¢ is between the limits 0, 1, and the
limits of # are taken to be 1, 0 accordingly), then, according to an admissible theory of
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general differentiation, we have the result in question. He has in the formula - Instead

of my #; and he proceeds, “ Here o increases continually with s. As s varies from 0 to oo,
¢ also varies from 0 to-oo. To any positive limits of ¢ will correspond positive limits
of s; and these, as will hereafter appear [refers to his note B], will in certain cases replace
the limits 0 and oo in the expression for V.”

160. It seems better to deal with the result in the following manner, as in part shown
p- 803 of BooLr’s memoir. Writing the integral in the form

v=CRak f 5 du dt 4~ (Ef 2 1) @(u)§ dv . v* cosf(u—oc)u+igrt,

effect the integration in regard to v ; viz. according as w is greater or less than o, then

ymdv 7 cos{(%—r:)v—l—%gw}:r(qi:)m;q(gj_l)w, or 0,
0 ——a

—_ 7 - 0 :
TI(=g) =)™ 2%
and consequently, writing for ¢ its value,

( % 1 21 2 2\ ~7!
Ve §§dz dt{tq (E-Hf2 1 2) ( L 7) ou,

or 0 as above}.

161. To further explain this, consider ¢ as an z-coordinate and » as a y-coordinate ;

then tracing the curve
e

Ptz 'z

2 2

_a
Y=gt

for positive values of #, this is a mere hyperbolic branch, as shown in the figure, viz.
=0, y=o0; and as & continually increases to « , y continually decreases to zero.

il

/ T b

The limits are originally taken to be from #=0 to =1 and ¢=0 to ¢=c0, viz. over
the infinite strip bounded by the lines £0, O1,11; but within these limits the function
under the integral sign is to be replaced by zero whenever the values #, ¢ are such that

(o]

a? 2 2
w is less than — et "+Iﬂi+"t+%’ viz. when the values belong to a point in the shaded
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portion of the strip; the integral is therefore to be extended only over the unshaded
portion of the strip; viz. the value is
— I‘l (f ﬁ g—1 2 2 —~( _ a? _Ci__f?>~q_l

V= ﬁv————r( Tt 0) § dudt .ttt R) " w yirw iy ou,
the double integral being taken over the unshaded portion of the strip; or, what is the
same thing, the integral in regard to # is to be taken from u:T“_g...—l- h2+t+ (say
from w=0c) to u=1, and then the integral in regard to ¢ is to be taken from £=4 to
t{=o0, where. as before, 0 is the positive root of the equation s=1, that is of

a® _
]@1'6"'+h2+0+

162. Write u=0+4(1—0c)z, and therefore u—o=(1—0)2, 1 —u=(1—0¢)(1—2) and
du=(1—0c)dx; then the limits (1,0) of & correspond to the limits (1, ¢) of », and the
formula becomes

Ve (L) ("t gm0t 1) (L) § dx . 2= ¢ (o4 (1—o)a),

where ¢ is retained in place of its value f‘Q—H .—l—].l%—l-?. This is in fact a form
(deduced from BooLr’s result in the memoir of 1846) given by me, Cambridge and
Dublin Mathematical Journal, vol. ii. (1847), p. 219.

If in particular pu=(1—u)"*", then ¢{s+(1—0)x}=(1—0)"""(1—a)**™, and thence
ylx—q“’{qoa—i—(l—a)x}d.%:(l——a)’" 1a:‘q”l(l—w)q*”‘olya,
0

_ (=gl +g+m)
= I'(l4m) (1—0)";

and thence restoring for ¢ its value, we have

Ty TA+g+m) 1 2y—1 a2 2 2\ ™
V—P(§S+g F(1+m (f ]l)§ dt. e (t+j t+h) ( f@_l_t N/I;—l—t_%)

as the value of the integral
2 2 m
g (1—%...—%)“ d..dz
i

(a—a)2...+ (c—2)%+ 2 11

over the elhps01d -I—%Zzl. This is in fact the theorem of Annex IV. No. 110 in

f?

its general form; but the proof assumes that ¢ is positive.



